skip to main content

Special Mathematics Colloquium

Monday, December 3, 2018
4:00pm to 5:00pm
Add to Cal
Linde Hall 310
Thin sets of primes in arithmetic
Yunqing Tang, Department of Mathematics, Princeton University,
The understanding of various Frobenius actions plays a central role in the study of arithmetic geometry. For an elliptic curve E over the rational numbers, the Sato—Tate conjecture and the Lang—Trotter philosophy provide heuristics for the behavior of the Frobenius endomorphisms of the reductions of E modulo primes. These heuristics predict that certain sets of primes of density zero ought to be infinite for every E. Their higher-dimensional generalizations apply to abelian surfaces—the 2-dimensional analogs of elliptic curves. I will discuss recent results that in certain cases establish the infinitude of such sets via intersection theory on moduli spaces. The talk is based on joint work with Shankar and Maulik—Shankar.
For more information, please contact Mathematics Department by phone at 4335 or by email at [email protected].