skip to main content
Caltech

Physics Colloquium

Thursday, November 10, 2022
4:00pm to 5:00pm
Add to Cal
Online and In-Person Event
Quantum sensing and imaging with diamond spins
Ania Bleszynski Jayich, UC Santa Barbara,

Solid state spin qubits, in particular the nitrogen vacancy (NV) center in diamond, offer a path towards truly nanoscale imaging of condensed matter and biological systems with sensitivity to single nuclear spins. Here I discuss our NV-based magnetic imaging experiments as applied to condensed matter systems, where we have imaged current flow patterns in graphene in order to reveal the transition from ohmic to electron-collision-dominated flow regimes. A grand challenge to improving the spatial resolution and magnetic sensitivity of the NV is mitigating surface-induced quantum decoherence, which I will discuss in the second part of this talk. Decoherence at interfaces is a universal problem that affects many quantum technologies, but the microscopic origins are as yet unclear. Our studies guide the ongoing development of quantum control and materials control, pushing towards the ultimate goal of NV-based single nuclear spin imaging.

Join via Zoom:

https://caltech.zoom.us/j/85811994621

Meeting ID: 858 1199 4621

The colloquium is held in Feynman Lecture Hall, 201 E. Bridge.

In person is open to those with a valid Caltech ID.