skip to main content

Organic Chemistry Seminar

Wednesday, March 4, 2020
4:00pm to 5:00pm
Add to Cal
Noyes 153 (J. Holmes Sturdivant Lecture Hall)
Synthesis of Glycopolymers and Responsive Materials for Therapeutic Protein Delivery
Heather Maynard, Professor, Department of Chemistry & Biochemistry, University of California Los Angeles,

Therapeutic proteins are challenging to transport and store, and thus the majority must be refrigerated or frozen. Proteins exposed to these conditions often lose activity. This can be harmful or even fatal for patients that take the medications. Thus, polymeric materials that are capable of stabilizing biomolecules at room temperature and to agitation are of significant interest. This talk will focus on new polymeric materials to address this important problem. Well-defined polymers were synthesized by controlled radical polymerization and ring opening polymerizations. These were tested in their ability to stabilize proteins to room temperature, elevated temperatures, mechanical agitation, and pH changes when added as excipients. Side chains derived from Nature and others from known excipient classes were compared and contrasted, and the mechanisms of stabilization were investigated. Grafting to and grafting from synthetic strategies were utilized to prepare protein conjugates of these polymers, and in vivo testing showed that the polymers significantly increased blood circulation times in addition to retaining protein activity after exposure to high temperatures. Furthermore, by altering the synthesis, the polymers could be made responsive in order to release protein drugs on demand. Synthesis, stabilization properties, and application of the polymers in medicine will be presented.

For more information, please contact Rena Becerra-Rasti by phone at x6151 or by email at [email protected].