skip to main content

Logic Seminar

Tuesday, December 10, 2019
2:30pm to 3:30pm
Add to Cal
Linde Hall 387
Questions about phase spaces of minimal Boolean flows
Dana Bartosova, Department of Mathematics, University of Florida,

By a flow, we mean a continuous action of a topological groups $G$ on a compact Hausdorff space $X$. We refer to $X$  as the phase space of the flow. We are primarily interested in minimal flows, that is, flows with no non-trivial proper closed invariant subset. Among minimal flows, there exists a maximal one called the universal minimal flow, $M(G),$ which admits a continuous homomorphism onto every minimal flow. When $G$ is non-Archimedean, that is, it admits a neighbourhood basis of the identity of open subgroups, then $M(G)$ is $0$-dimensional. These are exactly groups of automorphisms of first-order structures with the topology of pointwise convergence. If $M(G)$ is $0$-dimensional, we can think dually in terms of its algebra of clopen subsets.  We summarize which algebras are known to appear as phase spaces of universal minimal flows and we pose questions about the unknown.

For more information, please contact Math Department by phone at 626-395-4335 or by email at [email protected].