skip to main content

H.B. Keller Colloquium

Monday, November 2, 2020
2:00pm to 3:00pm
Add to Cal
Online Event
Harnessing Special Properties for Distributed Decision-Making in Network Systems
Na Li, Gordon McKay Professor of Electrical Engineering and Applied Mathematics, Electrical Engineering and Applied Mathematics, Harvard University,

Abstract: Recent radical evolution in distributed sensing, computation, communication, and actuation has fostered the emergence of cyber-physical network systems. Examples cut across a broad spectrum of engineering and societal fields such as power grids, swarm robotics, air/ground transportation systems, green buildings, and other societal networks. Regardless of the specific application, one central goal is to shape the network collective behavior through the design of admissible local decision-making algorithms. This is nontrivial especially due to the challenges placed by the local connectivity, model and environment uncertainties, imperfect communication, and the complex intertwined physics and human interactions.  In this talk, I will present our recent progress in formally advancing the systematic design of distributed coordination in network systems via harnessing special properties of the underlying problems and systems. In particular, we will present three examples and discuss three type of properties, i) how to use network structure properties to develop scalable reinforcement learning algorithms, ii) how to use system physical dynamics to develop real-time feedback optimization algorithms, and iii) how to use algorithmic properties to develop communication-reduced distributed algorithms.

Acknowledgement: The talk is based on different pieces of work with many collaborators. First authors include Guannan Qu, Sindri Magnusson, Yingying Li, Xin Chen, Yujie Tang.

For more information, please contact Diana Bohler by phone at 626-232-6138 or by email at [email protected].