skip to main content
Caltech

Geometry and Topology Seminar

Friday, March 5, 2021
3:00pm to 4:00pm
Add to Cal
Online Event
Stable and unstable homology of graph braid groups
Ben Knudsen, Mathematics Department, Northeastern University,

The homology of the configuration spaces of a graph forms a finitely generated module over the polynomial ring generated by its edges; in particular, each Betti number is eventually equal to a polynomial in the number of particles, an analogue of classical homological stability. The degree of this polynomial is captured by a connectivity invariant of the graph, and its leading coefficient may be computed explicitly in terms of cut counts and vertex valences. This "stable" (asymptotic) homology is generated entirely by the fundamental classes of certain tori of geometric origin, but exotic non-toric classes abound unstably. These mysterious classes are intimately tied to questions about generation and torsion whose answers remain elusive except in a few special cases. This talk represents joint work with Byung Hee An and Gabriel Drummond-Cole.

For more information, please contact Math Department by phone at 626-395-4335 or by email at [email protected] or visit https://sites.google.com/site/caltechgtseminar/home.