skip to main content

Geometry and Topology Seminar

Friday, January 26, 2018
3:00pm to 4:00pm
Add to Cal
Building 15, Room 104
Hilbert Structure on the universal Teichmuller space and its Weil-Petersson curvature operator
Zeno Huang, Department of Mathematics, CUNY CSI,
The universal Teichmuller space is an infinitely dimensional complex Banach manifold which contains all classical Teichmuller spaces. To study its Riemannian geometry, Takhtajan and Teo (2006) introduced a Hilbert structure and generalized many results in Weil-Petersson geometry from Teichmuller space to the universal one. In joint work with Y. Wu of Tsinghua university, we investigate the curvature operator of this metric on this Hilbert manifold and prove that it's bounded, nonpositive definite and noncompact.
For more information, please contact Mathematics Department by phone at 626-395-4335 or by email at [email protected].