skip to main content

GALCIT Colloquium

Friday, March 1, 2019
3:00pm to 4:00pm
Add to Cal
Guggenheim 133 (Lees-Kubota Lecture Hall)
Regulation-Triggered Batch Learning: A New Hope for Adaptive Aircraft Control
Miroslav Krstic, Distinguished Professor, Mechanical and Aerospace Engineering, University of California, San Diego,

In the six decades of conventional TUNING-BASED adaptive control, the unattained fundamental goals, in the absence or detrimental artificial excitation, have been (1) exponential regulation, as with robust controllers, and (2) perfect learning of the plant model. Such unattained fundamental goals have hampered real-time learning in aerospace vehicle control. Over a quarter century after I started my career by extending conventional adaptive controllers from linear to nonlinear systems, I reach those decades-old goals with a new non-tuning paradigm: regulation-triggered batch identification. The parameter estimate in the controller is held constant and, only once the regulation error grows "too large," a parameter estimate update, based on the data since the last update, is "triggered." Such a simple parameter estimator provably, and remarkably, terminates updating after a number of state growth-triggered updates which is no greater than the number of unknown parameters. This yields exponential regulation and perfect identification except for zero-measure initial conditions. I present a design for a more general class of nonlinear systems than ever before, a flight control example (the "wing rock" instability), and an extension to a PDE problem. This is joint work with Iasson Karafyllis from the Mathematics Department of the National Technical University of Athens.

For more information, please contact Wesley Yu by phone at (915) 309-7972 or by email at [email protected].