skip to main content

Chemical Engineering Seminar

Thursday, December 3, 2020
12:00pm to 1:00pm
Add to Cal
Online Event
Understanding and Engineering Catalytic Materials Using Nanocrystal Precursors
Matteo Cargnello, Assistant Professor, Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University,

Catalytic processes are central to the goal of a sustainable future. A promising approach in developing catalytic materials is represented by the design of catalytic sites based on the knowledge of reaction mechanisms and structure-property relationships and aided by computation, and in the precise synthesis of these sites at the atomic and molecular level. Nanocrystal precursors, with tunable active sites and compositions, can help in this mission. The goal of this talk is to show how this approach can provide not only fundamental understanding of catalytic reactions, but also a way to precisely engineer sites to produce efficient catalysts that are active, stable and selective for several important transformations. Advances in the synthesis of these materials will be presented. Examples of the use of these building blocks as supported systems or in combination with hybrid organic materials will be shown, both to understand trends in methane and CO2 activation, and in the preparation of optimized catalytic systems combining multiple active phases. In all these examples, important efforts to obtain precious structure-property relationships will be highlighted, with this knowledge used to prepare more efficient and stable catalysts for the sustainable use and production of fuels and chemicals.

For more information, please contact Sohee Lee by phone at 4197878331 or by email at [email protected].