Algebra and Geometry Seminar/LA Joint Topology Seminar
The computation of higher genus Gromov-Witten invariants of quantic 3--fold (or compact Calabi-Yau manifold in general) has been a focal point of research of geometry and physics for more than twenty years. A series of deep conjectures have been proposed via mirror symmetry for the specific solutions as well as structures of its generating functions. Building on our initial success for a proof of genus two conjecture formula of BCOV, we present a proof of two conjectures regarding the structure of the theory. The first one is Yamaguchi-Yau's conjecture that its generating function is a polynomial of five generators and the other one is the famous holomorphic anomaly equation which governs the dependence on four out of five generators. This is a joint work with Shuai Guo and Felix Janda.