Caltech Logo

TCS+ Talk

Thursday, September 17, 2020
10:00am to 11:00am
Add to Cal
Online Event
Solving Sparse Linear Systems Faster than Matrix Multiplication
Richard Peng, Assistant Professor, Georgia Institute of Technology,

Abstract: Can linear systems be solved faster than matrix multiplication? While there has been remarkable progress for the special cases of graph structured linear systems, in the general setting, the bit complexity of solving an n-by-n linear system Ax=b is n^\omega, where \omega<2.372864 is the matrix multiplication exponent. Improving on this has been an open problem even for sparse linear systems with poly(n) condition number.

We present an algorithm that solves linear systems in sparse matrices asymptotically faster than matrix multiplication for any \omega>2. This speedup holds for any input matrix A with o(n^{\omega-1}/\log(\kappa(A))) non-zeros, where \kappa(A) is the condition number of A. For poly(n)-conditioned matrices with O(n) nonzeros, and the current value of \omega, the bit complexity of our algorithm to solve to within any 1/poly(n) error is O(n^{2.331645}).

Our algorithm can be viewed as an efficient randomized implementation of the block Krylov method via recursive low displacement rank factorizations. It is inspired by the algorithm of [Eberly-Giesbrecht-Giorgi-Storjohann-Villard ISSAC `06 `07] for inverting matrices over finite fields. In our analysis of numerical stability, we develop matrix anti-concentration techniques to bound the smallest eigenvalue and the smallest gap in eigenvalues of semi-random matrices.

Joint work with Santosh Vempala, manuscript at

To watch the talk:

  • Watching the live stream. At the announced start time of the talk (or a minute before), a live video stream will be available on our "next talk" page. Simply connect to the page and enjoy the talk. No webcam or registration is needed. Questions and comments during the talk are welcome (text only, unfortunately); simply post a comment below the live video stream on YouTube.
  • Watching the recorded talk offline. The recorded talk will be made available shortly after the talk ends on our YouTube page. (Please leave a comment if you enjoyed it!)
For more information, please contact Bonnie Leung by email at