Caltech Logo

Mechanical and Civil Engineering Seminar: PhD Thesis Defense

Thursday, August 27, 2020
9:00am to 10:00am
Add to Cal
Online Event
"Investigation of transport phenomena of thermal acoustic excitations in semi-crystalline and amorphous materials using transient grating spectroscopy"
Taeyong Kim, Graduate Student, Applied Physics,

Abstract: The physics of transport of heat-carrying atomic vibrations in amorphous and semi-crystalline solids is a topic of fundamental interest. Diverse tools have been employed to study thermal transport in these materials, including cryogenic thermal conductivity measurements and various inelastic scattering tools. However, unambiguously identifying the damping mechanisms of few THz and smaller frequency excitations remains difficult owing to the lack of the experimental probes in the frequency band. As a result, debate has remained regarding the microscopic origin of weak acoustic damping in amorphous Si, the unusually high thermal conductivity of ultra-drawn polyethylene, and other topics.

In this thesis, we investigate the transport properties of heat-carrying acoustic excitations in semi-crystalline and amorphous solids using transient grating spectroscopy. This optical method permits the creation of thermal gradients over sub-micron length scales which may be comparable to the attenuation lengths of the excitations. We show how these measurements can be used to constrain the damping mechanisms in the sub-THz range that has been historically inaccessible by typical methods such as inelastic scattering.

First, we utilize the capability of TG to resolve the microscopic heat transport properties of phonons in highly oriented semi-crystalline polyethylene (PE). Earlier experimental studies have reported thermal conductivities of up to around 100 Wm-1K-1 in crystalline polyethylene, orders of magnitude larger than the bulk value of 0.4 Wm-1K-1. However, the microscopic origin of the high thermal conductivity remains unclear. We address this question by applying TG to highly oriented polyethylene to show that mean free paths on micron length scales are the dominant heat carriers. Using a low-energy anisotropic Debye model to interpret these data, we find evidence of one-dimensional phonon density of states for excitations of frequency less than ~ THz. This transition frequency is consistent with the unique features of ultradrawn PE, in particular the stiff longitudinal branch leading to wavelengths of 8 nm at 2 THz frequency; and fiber diameters ~ 10 nm observed in prior structural studies of ultradrawn polymers; so that the wavelength does indeed exceed the fiber diameter at the relevant frequencies.

Second, we report the measurements of the frequency-resolved mean free path of heat-carrying acoustic excitation in amorphous silicon (aSi), for the first time. The heat-carrying acoustic excitations of amorphous silicon are of interest because their mean free paths approach the micron scale at room temperature. Despite extensive investigation, the origin of the weak acoustic damping in the heat-carrying frequencies remains a topic of debate for decades. A prior study suggested a framework of classifying the vibrations into propagons, diffusons, and locons. Propagons were considered phonon-like, delocalized, propagating vibrations; locons as localized vibrations, and diffusons as delocalized yet non-propagating vibrations. Following the framework, numerous works have predicted mechanism of acoustic damping in aSi, but the predictions have contradicted to observations in experiments. In this work, we obtained measurements of the frequency-dependent mean free path in amorphous silicon thin films from 0.1-3 THz and over temperatures from 60 - 315 K using picosecond acoustics (PSA) and transient grating spectroscopy. We first describe our PSA experiments to resolve the attenuation of 0.1 THz acoustic excitations in aSi. We then present our table-top approach to resolve MFP of heat-carrying acoustic excitation between 0.1-3 using TG spectroscopy. The mean free paths are independent of temperature and exhibit a Rayleigh scattering trend over most of this frequency range. The observed trend is inconsistent with the predictions of numerical studies based on normal mode analysis but agrees with diverse measurements on other glasses. The micron-scale MFPs in amorphous Si arise from the absence of Akhiezer and two-level system damping in the sub-THz frequencies, leading to heat-carrying acoustic excitations with room-temperature damping comparable to that of other glasses at cryogenic temperatures. Our results allow us to establish a clear picture for the origin of micron-scale damping in aSi by understanding vibrations as acoustic excitation rather than propagons, diffusons, and locons.

Please virtually attend this thesis defense: Zoom Link: https://caltech.zoom.us/j/3860721155

For more information, please contact Sonya Lincoln by email at lincolns@caltech.edu or visit https://caltech.zoom.us/j/3860721155.