ACM95b/100b Lecture Notes

Caltech 2004
The Method of Frobenius

Consider the equation

2?y" + ap(x)y + q(z)y = 0, (1)

where & = 0 is a regular singular point. Then p(z) and ¢(z) are analytic at the origin and have convergent
power series expansions
o0 oo
p(z) =Y pea®,  q(@) = aa®, |zl <p (2)
k=0 k=0

for some p > 0. Let 1, 2 (R(r1) > R(r2)) be the roots of the indicial equation
F(r)=r(r—1) 4 por + qo = 0. (3)

Depending on the nature of the roots, there are three forms for the two linearly independent solutions on the
intervals 0 < |z| < p. The power series that appear in these solutions are convergent at least in the interval
|z| < p. (Proof: Coddington)

Case 1: Distinct roots not differing by an integer (11 —ry # N, N € Z)

The two solutions have the form

y(z) = z™ Z ay (rl)xk (4)
k=0

ya(z) = 2™ Z by (rz)xk (5)
k=0

where ay(r1) and by(r2) are determined by substitution of (4) or (5) into equation (1) to obtain the corre-
sponding recurrence relation.

Case 2: Repeated root (r; =rs)

The first solution y; (x) has form (4) and the second solution has the form

ya2(x) = y1(x)loge + 2™ Z bk(rl)xk. (6)
k=1

Note that the term k = 0 is ommitted as it would just give a multiple of y; (z).

Case 3: Roots differing by an integer (r; —ro = N, N € Z*)

The first solution y;(x) has form (4) and the second solution has the form

ya(x) = cyr (z) loge + «™ Z b (r2)z". (7)
k=0

where ¢ may turn out to be zero. The constant by (r2) is arbitrary and may be set to zero. This is evident
by writing

o0
" Z bk(Tg).]?k =box" + ...+ by TNl g (by +byyr12 + byyox® +..) (8)
k=0

form of yi(z)

so we see that by (r2) plays the same role as ag(r1) and merely adds multiples of y; (z) to ya(x).



Example: Case 1
Consider
dry" +2y +y =0 (9)

so x = 0 is a regular singular point with p(z) = 3 and g(z) = £. The power series in y; and ys will converge

for |z| < oo since p and ¢ have convergent power series in this interval. By (3), the indicial equation is
1 , 1
r(r—1)+§r:0 = r—ir:O (10)

sor; = 1 and 75 = 0 (Note: po = %, go = 0). Substituting y = 2" > 2, axz® into (9) and shifting the

indices of the first two series so all terms are of form z**" we get
(o] oo oo
4 Z (k47 4+ 1)(k + r)app 28T +2 Z (k47 + ap 12" + Z apzttT = 0. (11)
k=—1 k=—1 k=0
All coefficients of powers zFt" must equate to zero to obtain a solution. The lowest power is 2"~ ! for k = —1
and this yields
5 1
dr(r—1)+2r=0 = r—irzo (12)

which is just the indicial equation as expected. For k > 0, we obtain
Adk+r+1)(k+r)agss +2(k+7+1)agys +ar =0 (13)

corresponding to the recurrence relation

—ay,
2k +2r +2)(2k +2r + 1)’

Qi1 = | k=0,1,2.. (14)

First Solution: To find y; apply (14) with r =r = % to get the recurrence relation

—ay,
=———  k=0,1,2... 15
Al+1 (2k+3)(2k+2)7 5 Ly ( )
Th
" P S O Pp— (16)
1—3_27 2_5.47 3_7‘6’
i __% =% - % (17)
ay = 3'7 0@—5!, az = 7|7
Since ag is arbitrary, let ag = 1 so
(—=1)*
CLk(Tl) = m, k= O, 172 (18)
" s (I,
@) =) G (19)
=0

Second Solution: To find ys, just apply (14) with r = ro = 0 to get the recurrence relation

—by,
b = 20
ML 2k + 2)(2k + 1) (20)
Letting the arbitrary constant by = 1, then
(-1)*
br(r2) = 25)] (21)



SO

o~ (-D*
= 22
D an (22)
k=0
Example: Case 2
Consider
Ly=ay"+y —y=0 (23)
with p(z) = 1 and ¢(z) = —x and a regular singular point at 2 = 0. The power series in y; and yo will

converge for |z| < oo since p and g have convergent power series in this interval. The indicial equation is
given by
rr—=1)+r=0 = r2=0 (24)

sory =ry =0.
First solution: Substituting y = > "5 axz® into (23) results in

Z(k‘ + 1)kak+1xk + Z(k + 1)ak+1xk - Z akmk =0 (25)
k=0 k=0 k=0

after shifting indices in the first two series to express all terms as multiples of x;. Regrouping terms gives
(o]
> [k + Dkagrs + (k + Daggr — agla® =0, (26)
k=0

so equating all coefficients of powers of = to zero gives

ag

=—70s5, k>0 27
k41 (k + 1)2 ) el ( )
Then for k> 1 a a “
k-1 k—2 0
= = = ... — . 28
T T T 2k - 1)2 (k)2 (28)
Setting the arbitrary constant ag(r1) = 1, the first solution is
=1 2 23
= =1 — 4+ =+ .. 2
Z(k! tat et (29)
k=0
Second solution: Consider substituting
y=uy(z)logz + Z bra® (30)
k=1
into (23). Then
y/—y—1+yllogx+—2bkx (31)
and
2 d2
xy’ =z ———|—2 +y110gx+d22bkx (32)
k=1

so making cancellations we obtain

Liyi]logz +2y; + L

i bkxk] =0. (33)

k=1



Now we know L[y;] = 0 so this gives
: [z b] _— 30
k=1

or in detail after appropriate index shifts to the first and second series

00 2
br+ > [(k+ Dkberr + (k+ Dbgyy — byl ok = -2 — 2 — % — .. (35)
k=1
Equating coefficients gives
bp = -2
4by — by = -1
1
903 — by = %
> 3 11
by =-2, bo=——, by3=——— 36
1 y 02 TR 108’ (36)
The second linearly independent solution is then
_ 3, 11 4
ya(2) = y1(z)logx + | —22 1% 108 (37)
Example: Case 3 (log term required)
Consider
Ly=zy" +y=0 (38)

with p(z) = 0 and ¢(z) = x and a regular singular point at z = 0. The power series in y; and y» will converge
for |z| < oo since p and ¢ have convergent power series in this interval. The indicial equation is given by

r(r—1)=0 (39)

sory =1and ro =0.
First solution: Substituting y = 2" > ;- axz” into (38) results in

oo

Z (r+Ek)(r+k—1agz" 1 +Zak:r =0. (40)
k=0 k=0

Shifting indices in the second series and regrouping terms gives
r(r=Daoz"" + Y [(r+k)(r + k — Day, + ap_]2" ™~ = 0. (41)
k=1

Setting the coefficient of "' to zero we recover the indicial equation with 7, = 1 and 79 = 0. Setting all
the other coefficients to zero gives the recurrence relation

—Aag—1
= > 1. 42
il ey e gy LSS (42)
With r = r; this gives
_ —ap—1 ap_2  (=Dka
G Dk rDRGE—D T k)R (43)



Setting the arbitrary constant ag(ry) = 1, the first solution is then

2 3 4

U N G ) L N N o
_‘”kg(kﬂ)(myx Syt T m T (44)

Second solution: First, let’s see how we run into trouble if we fail to include the log term in the second
solution. The recurrence relation (42) with r = ro = 0 becomes (with by replacing ay, since we are now using
r=ry)
—br_1

kL > 45
k(k—1) - (45)
This formula fails for £ = 1. As was anticipated, for roots of the form ry —r; = N with N € ZT it may
not be possible to determine by if the log term is ommitted from y, (in our case N = 1). For the second
solution consider substituting

by, =

y = cyi(z)logz + 2° Z ba” (46)
k=0
into (38) so
zy = _Gn 2cy + cxy! logx + xﬁ i bez® | . (47)
z da? k=0

We then obtain
cLy]logx + 2¢) — = + L

Zbkx ] =0. (48)

Now we know L[y;] = 0 so this gives

L k — / %
Zbkx ] 2cy; + . (49)
k=0
Expanding the left hand side gives
bo + (2bg + by)x + (6bs + be)x? + (12by + b3)x® + (20b5 + by)x* + ... (50)

and expanding the right hand side gives

3 5 7 3 1
c+ 56T = Ecw + T2 ~ 330 +.. (51)

Equating coefficients gives the system of equations

bo = —C
3
2by +b1 = 50
5
6bs + by = —EC
7
12b by = —
4+ 53 144
Now bg(rz) is an arbitrary constant and ¢ = —by. Notice that b; can also be chosen arbitrarily. This is

1

because it is the coefficient of ™ = x* = x in the series

" Z bkaﬁk =by+ ™ (bl + box + b3$2 + ) . (52)
k=0

form of yi(x)



Consequently, modifying by (re) changes subsequent coefficients by (r3) for k > 1 so as to effectively add a
multiple of y; (z) to y2(z). In effect, changing by just affects the choice of the arbitrary constant ag(rq) that
we already chose to be ayp = 1. For convenience, we now choose by = 1 and b; = 0. Then by = —3/4,
bs = 7/36, by = —35/1728, ... so the second solution is

3 7 35

Example: Case 3 (log term drops out)

Consider )
Ly =%y +zy + (z2 - 4) y=0 (54)
with p(z) = 1 and ¢(z) = (2 — %) and a regular singular point at = 0. The power series in y; and yo will

converge for |z| < oo since p and ¢ have convergent power series in this interval. The indicial equation is
given by
1
7"(7"—1)—1—7‘—1:0 (55)
sory = % and ro = —%.
First solution: Substituting y = 2" >_,—, axz” into (54) results in

Z [(r +E)(r+k-1)+(r+k) - 4} apztF 4 Zakx“—k—ﬂ = 0. (56)
k=0 k=0

or shifting indices in the last series

<r2 - i) apr” + [(r +1)2 - i] apz’ 4 i { [(7“ + k%) — ﬂ ar + akz]}x”k =0. (57)

k=2

Setting the coefficient of " to zero we recover the indicial equation. Setting the other coeflicients to zero
we find

1
{(r +1)2 - 4] a1 =0 (58)
and the recurrence relation )
|:(7' + ]{7)2 — 4:| A = —Ak—2, k Z 2. (59)
For r; = % we then have
ar =0, k=1,3,5.. (60)
and s
=———"— k=2406,.. 61
a (k + 1)]{77 ) Ty Uy ( )
Then ay = —ag/3!, ag = ag/5!, ... so letting k = 2m in general
(=1)™ao
=%k =1,2,3.. 62
“2m = om 1 1) (62)
Choosing ag = 1, the first solution is
_1/2 — (=D™ o 63
o) =o1 35 LI ®

Second solution: For the second solution in general we require a solution of the form

y=cy(x) logx—l—m_lﬂz:bkxk. (64)
k=0



If the roots are of the form 7o — r; = N with N € ZT then the log term is generally required to enable the
calculation of by (r2). However, in the present case, we see from (58) that the coefficient of 2" ™! will vanish
for 7o = —1/2 regardless of the value of b; (where by replaces a; since we are now using r = r3). Hence, the
log term is unnecessary in y and ¢ = 0. Let’s suppose we did not notice this ahead of time and attempted
to substitute the general form (64) into (54). Then notice

y = £+cy110gx+f

_1/2Zbkm ‘| (65)

and
" Y1 cyi —1/2
= —— 2— 1 —_— bi 66
y = + + cyy og:v+ [ g x ] (66)

We then obtain
cLly1]logz + 2cay) + L

(o)
1?2 Zbkxk] =0. (67)
k=0
Now we know L[y;] = 0 so this gives
L [x_l/Q Zbkxk] = —2cxy). (68)
k=0

Expanding the left hand side (for convenience we may use (58) and (59) with by replacing ay since we are
using r = r9) gives

0- b(]l'_l/2 +0- b1$1/2 + (2b2 + b(])$3/2 + (6b3 + bl)x5/2 + ... (69)
and expanding the right hand side gives
5 9
—cxt/? + 60955/2 — mcxgﬂ + .. (70)

Equating coefficients give the system of equations

0- bl = —C
2ba+by = 0
)

6b3 + b1 = EC
12b4+by = 0

So by(r2) and by (r2) are both arbitrary as expected and ¢ = 0. The other coefficients are then given by

(=1)*bo (=D
bor. = b =—>— k=12 .. 1
2k (Qk)' ) 2k+1 (2]€+1)'7 y &y (7 )
Hence the second solution has the form
> k > k
_—1/2 (=1)" o (=1) 2k+1
ya(a) =27 o kz et Th kz ehrlt | (72)
=0 =0

Note that as expected, by just introduces a multiple of y;(x) so we may choose by = 0. Setting the arbitrary
constant by = 1, the second solution finally becomes

yo(z) = 27 1/2 Z (_1)%1‘2k. (73)

k=0



