
ACM95b/100b Lecture Notes
    
Caltech 2004

The Method of Frobenius

Consider the equation
x2y′′ + xp(x)y′ + q(x)y = 0, (1)

where x = 0 is a regular singular point. Then p(x) and q(x) are analytic at the origin and have convergent
power series expansions

p(x) =
∞∑

k=0

pkxk, q(x) =
∞∑

k=0

qkxk, |x| < ρ (2)

for some ρ > 0. Let r1, r2 (R(r1) ≥ R(r2)) be the roots of the indicial equation

F (r) = r(r − 1) + p0r + q0 = 0. (3)

Depending on the nature of the roots, there are three forms for the two linearly independent solutions on the
intervals 0 < |x| < ρ. The power series that appear in these solutions are convergent at least in the interval
|x| < ρ. (Proof: Coddington)

Case 1: Distinct roots not differing by an integer (r1 − r2 6= N, N ∈ Z)

The two solutions have the form

y1(x) = xr1

∞∑

k=0

ak(r1)x
k (4)

y2(x) = xr2

∞∑

k=0

bk(r2)x
k (5)

where ak(r1) and bk(r2) are determined by substitution of (4) or (5) into equation (1) to obtain the corre-
sponding recurrence relation.

Case 2: Repeated root (r1 = r2)

The first solution y1(x) has form (4) and the second solution has the form

y2(x) = y1(x) logx + xr1

∞∑

k=1

bk(r1)x
k. (6)

Note that the term k = 0 is ommitted as it would just give a multiple of y1(x).

Case 3: Roots differing by an integer (r1 − r2 = N, N ∈ Z
+)

The first solution y1(x) has form (4) and the second solution has the form

y2(x) = c y1(x) logx + xr2

∞∑

k=0

bk(r2)x
k. (7)

where c may turn out to be zero. The constant bN (r2) is arbitrary and may be set to zero. This is evident
by writing

xr2

∞∑

k=0

bk(r2)x
k = b0x

r2 + ... + bN−1x
r2+N−1 + xr1(bN + bN+1x + bN+2x

2 + ...)
︸ ︷︷ ︸

form of y1(x)

(8)

so we see that bN (r2) plays the same role as a0(r1) and merely adds multiples of y1(x) to y2(x).
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Example: Case 1

Consider
4xy′′ + 2y′ + y = 0 (9)

so x = 0 is a regular singular point with p(x) = 1
2 and q(x) = x

4 . The power series in y1 and y2 will converge
for |x| < ∞ since p and q have convergent power series in this interval. By (3), the indicial equation is

r(r − 1) +
1

2
r = 0 ⇒ r2 −

1

2
r = 0 (10)

so r1 = 1
2 and r2 = 0 (Note: p0 = 1

2 , q0 = 0). Substituting y = xr
∑

∞

k=0 akxk into (9) and shifting the
indices of the first two series so all terms are of form xk+r we get

4
∞∑

k=−1

(k + r + 1)(k + r)ak+1x
k+r + 2

∞∑

k=−1

(k + r + 1)ak+1x
k+r +

∞∑

k=0

akxk+r = 0. (11)

All coefficients of powers xk+r must equate to zero to obtain a solution. The lowest power is xr−1 for k = −1
and this yields

4r(r − 1) + 2r = 0 ⇒ r2 −
1

2
r = 0 (12)

which is just the indicial equation as expected. For k ≥ 0, we obtain

4(k + r + 1)(k + r)ak+1 + 2(k + r + 1)ak+1 + ak = 0 (13)

corresponding to the recurrence relation

ak+1 =
−ak

(2k + 2r + 2)(2k + 2r + 1)
, k = 0, 1, 2... (14)

First Solution: To find y1 apply (14) with r = r1 = 1
2 to get the recurrence relation

ak+1 =
−ak

(2k + 3)(2k + 2)
, k = 0, 1, 2... (15)

Then

a1 =
−a0

3 · 2
, a2 =

−a1

5 · 4
, a3 =

−a2

7 · 6
, ... (16)

so
a1 = −

a0

3!
, a2 =

a0

5!
, a3 = −

a0

7!
, ... (17)

Since a0 is arbitrary, let a0 = 1 so

ak(r1) =
(−1)k

(2k + 1)!
, k = 0, 1, 2... (18)

and

y1(x) = x1/2
∞∑

k=0

(−1)k

(2k + 1)!
xk. (19)

Second Solution: To find y2, just apply (14) with r = r2 = 0 to get the recurrence relation

bk+1 =
−bk

(2k + 2)(2k + 1)
. (20)

Letting the arbitrary constant b0 = 1, then

bk(r2) =
(−1)k

(2k)!
(21)
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so

y2(x) =
∞∑

k=0

(−1)k

(2k)!
xk. (22)

Example: Case 2

Consider
Ly ≡ xy′′ + y′ − y = 0 (23)

with p(x) = 1 and q(x) = −x and a regular singular point at x = 0. The power series in y1 and y2 will
converge for |x| < ∞ since p and q have convergent power series in this interval. The indicial equation is
given by

r(r − 1) + r = 0 ⇒ r2 = 0 (24)

so r1 = r2 = 0.
First solution: Substituting y =

∑
∞

k=0 akxk into (23) results in

∞∑

k=0

(k + 1)kak+1x
k +

∞∑

k=0

(k + 1)ak+1x
k −

∞∑

k=0

akxk = 0 (25)

after shifting indices in the first two series to express all terms as multiples of xk. Regrouping terms gives

∞∑

k=0

[(k + 1)kak+1 + (k + 1)ak+1 − ak]xk = 0, (26)

so equating all coefficients of powers of x to zero gives

ak+1 =
ak

(k + 1)2
, k ≥ 0. (27)

Then for k ≥ 1

ak =
ak−1

k2
=

ak−2

k2(k − 1)2
= ... =

a0

(k!)2
. (28)

Setting the arbitrary constant a0(r1) = 1, the first solution is

y1(x) =

∞∑

k=0

1

(k!)2
xk = 1 + x +

x2

4
+

x3

36
+ ... (29)

Second solution: Consider substituting

y = y1(x) log x +

∞∑

k=1

bkxk (30)

into (23). Then

y′ =
y1

x
+ y′

1 log x +
d

dx

∞∑

k=1

bkxk (31)

and

xy′′ = x

[

−
y1

x2
+ 2

y′

1

x
+ y′′

1 log x +
d2

dx2

∞∑

k=1

bkxk

]

(32)

so making cancellations we obtain

L[y1] log x + 2y′

1 + L

[
∞∑

k=1

bkxk

]

= 0. (33)
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Now we know L[y1] = 0 so this gives

L

[
∞∑

k=1

bkxk

]

= −2y′

1 (34)

or in detail after appropriate index shifts to the first and second series

b1 +
∞∑

k=1

[(k + 1)kbk+1 + (k + 1)bk+1 − bk] xk = −2 − x −
x2

6
− ... (35)

Equating coefficients gives

b1 = −2

4b2 − b1 = −1

9b3 − b2 = −
1

6
...

so

b1 = −2, b2 = −
3

4
, b3 = −

11

108
, ... (36)

The second linearly independent solution is then

y2(x) = y1(x) log x +

[

−2x −
3

4
x2 −

11

108
x3 − ...

]

(37)

Example: Case 3 (log term required)

Consider
Ly ≡ xy′′ + y = 0 (38)

with p(x) = 0 and q(x) = x and a regular singular point at x = 0. The power series in y1 and y2 will converge
for |x| < ∞ since p and q have convergent power series in this interval. The indicial equation is given by

r(r − 1) = 0 (39)

so r1 = 1 and r2 = 0.
First solution: Substituting y = xr

∑
∞

k=0 akxk into (38) results in

∞∑

k=0

(r + k)(r + k − 1)akxr+k−1 +
∞∑

k=0

akxr+k = 0. (40)

Shifting indices in the second series and regrouping terms gives

r(r − 1)a0x
r−1 +

∞∑

k=1

[(r + k)(r + k − 1)ak + ak−1]x
r+k−1 = 0. (41)

Setting the coefficient of xr−1 to zero we recover the indicial equation with r1 = 1 and r2 = 0. Setting all
the other coefficients to zero gives the recurrence relation

ak =
−ak−1

(r + k)(r + k − 1)
, k ≥ 1. (42)

With r = r1 this gives

ak =
−ak−1

(k + 1)k
=

ak−2

(k + 1)k2(k − 1)
= ... =

(−1)ka0

(k + 1)(k!)2
. (43)
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Setting the arbitrary constant a0(r1) = 1, the first solution is then

y1(x) = x
∞∑

k=0

(−1)k

(k + 1)(k!)2
xk = x −

x2

2
+

x3

12
−

x4

144
± ... (44)

Second solution: First, let’s see how we run into trouble if we fail to include the log term in the second
solution. The recurrence relation (42) with r = r2 = 0 becomes (with bk replacing ak since we are now using
r = r2)

bk =
−bk−1

k(k − 1)
, k ≥ 1. (45)

This formula fails for k = 1. As was anticipated, for roots of the form r2 − r1 = N with N ∈ Z
+ it may

not be possible to determine bN if the log term is ommitted from y2 (in our case N = 1). For the second
solution consider substituting

y = c y1(x) log x + x0
∞∑

k=0

bkxk (46)

into (38) so

xy′′ =

[

−
cy1

x
+ 2cy′

1 + cxy′′

1 log x + x
d2

dx2

∞∑

k=0

bkxk

]

. (47)

We then obtain

cL[y1] log x + 2cy′

1 −
cy1

x
+ L

[
∞∑

k=0

bkxk

]

= 0. (48)

Now we know L[y1] = 0 so this gives

L

[
∞∑

k=0

bkxk

]

= −2cy′

1 +
cy1

x
. (49)

Expanding the left hand side gives

b0 + (2b2 + b1)x + (6b3 + b2)x
2 + (12b4 + b3)x

3 + (20b5 + b4)x
4 + ... (50)

and expanding the right hand side gives

−c +
3

2
cx −

5

12
cx2 +

7

144
cx3 −

1

320
cx4 ± ... (51)

Equating coefficients gives the system of equations

b0 = −c

2b2 + b1 =
3

2
c

6b3 + b2 = −
5

12
c

12b4 + b3 =
7

144
c

...

Now b0(r2) is an arbitrary constant and c = −b0. Notice that b1 can also be chosen arbitrarily. This is
because it is the coefficient of xr1 = x1 = x in the series

xr2

∞∑

k=0

bkxk = b0 + xr1(b1 + b2x + b3x
2 + ...)

︸ ︷︷ ︸

form of y1(x)

. (52)
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Consequently, modifying b1(r2) changes subsequent coefficients bk(r2) for k > 1 so as to effectively add a
multiple of y1(x) to y2(x). In effect, changing b1 just affects the choice of the arbitrary constant a0(r1) that
we already chose to be a0 = 1. For convenience, we now choose b0 = 1 and b1 = 0. Then b2 = −3/4,
b3 = 7/36, b4 = −35/1728, ... so the second solution is

y2(x) = −y1(x) log x +

[

1 −
3

4
x2 +

7

36
x3 −

35

1728
x4 ± ...

]

. (53)

Example: Case 3 (log term drops out)

Consider

Ly ≡ x2y′′ + xy′ +

(

x2 −
1

4

)

y = 0 (54)

with p(x) = 1 and q(x) = (x2 − 1
4 ) and a regular singular point at x = 0. The power series in y1 and y2 will

converge for |x| < ∞ since p and q have convergent power series in this interval. The indicial equation is
given by

r(r − 1) + r −
1

4
= 0 (55)

so r1 = 1
2 and r2 = − 1

2 .
First solution: Substituting y = xr

∑
∞

k=0 akxk into (54) results in

∞∑

k=0

[

(r + k)(r + k − 1) + (r + k) −
1

4

]

akxr+k +
∞∑

k=0

akxr+k+2 = 0. (56)

or shifting indices in the last series

(

r2 −
1

4

)

a0x
r +

[

(r + 1)2 −
1

4

]

a1x
r+1 +

∞∑

k=2

{[

(r + k2) −
1

4

]

ak + ak−2]

}

xr+k = 0. (57)

Setting the coefficient of xr to zero we recover the indicial equation. Setting the other coefficients to zero
we find [

(r + 1)2 −
1

4

]

a1 = 0 (58)

and the recurrence relation [

(r + k)2 −
1

4

]

ak = −ak−2, k ≥ 2. (59)

For r1 = 1
2 we then have

ak = 0, k = 1, 3, 5... (60)

and
ak = −

ak−2

(k + 1)k
, k = 2, 4, 6, ... (61)

Then a2 = −a0/3!, a4 = a0/5!, ... so letting k = 2m in general

a2m =
(−1)ma0

(2m + 1)!
, k = 1, 2, 3... (62)

Choosing a0 = 1, the first solution is

y1(x) = x1/2
∞∑

m=0

(−1)m

(2m + 1)!
x2m. (63)

Second solution: For the second solution in general we require a solution of the form

y = c y1(x) log x + x−1/2
∞∑

k=0

bkxk. (64)
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If the roots are of the form r2 − r1 = N with N ∈ Z
+ then the log term is generally required to enable the

calculation of bN (r2). However, in the present case, we see from (58) that the coefficient of xr+1 will vanish
for r2 = −1/2 regardless of the value of b1 (where b1 replaces a1 since we are now using r = r2). Hence, the
log term is unnecessary in y2 and c = 0. Let’s suppose we did not notice this ahead of time and attempted
to substitute the general form (64) into (54). Then notice

y′ =
cy1

x
+ cy′

1 log x +
d

dx

[

x−1/2
∞∑

k=0

bkxk

]

(65)

and

y′′ = −
cy1

x2
+ 2

cy′

1

x
+ cy′′

1 log x +
d2

dx2

[

x−1/2
∞∑

k=0

bkxk

]

(66)

We then obtain

cL[y1] log x + 2cxy′

1 + L

[

x−1/2
∞∑

k=0

bkxk

]

= 0. (67)

Now we know L[y1] = 0 so this gives

L

[

x−1/2
∞∑

k=0

bkxk

]

= −2cxy′

1. (68)

Expanding the left hand side (for convenience we may use (58) and (59) with bk replacing ak since we are
using r = r2) gives

0 · b0x
−1/2 + 0 · b1x

1/2 + (2b2 + b0)x
3/2 + (6b3 + b1)x

5/2 + ... (69)

and expanding the right hand side gives

−cx1/2 +
5

6
cx5/2 −

9

120
cx9/2 ± ... (70)

Equating coefficients give the system of equations

0 · b1 = −c

2b2 + b0 = 0

6b3 + b1 =
5

6
c

12b4 + b2 = 0

...

So b0(r2) and b1(r2) are both arbitrary as expected and c = 0. The other coefficients are then given by

b2k =
(−1)kb0

(2k)!
, b2k+1 =

(−1)kb1

(2k + 1)!
, k = 1, 2, ... (71)

Hence the second solution has the form

y2(x) = x−1/2

[

b0

∞∑

k=0

(−1)k

(2k)!
x2k + b1

∞∑

k=0

(−1)k

(2k + 1)!
x2k+1

]

. (72)

Note that as expected, b1 just introduces a multiple of y1(x) so we may choose b1 = 0. Setting the arbitrary
constant b0 = 1, the second solution finally becomes

y2(x) = x−1/2
∞∑

k=0

(−1)k

(2k)!
x2k. (73)
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