$100 Million Gift from Gordon and Betty Moore Will Bolster Graduate Fellowships

Trustees Gordon (PhD '54) and Betty Moore have pledged $100 million to Caltech, the second-largest single contribution in the Institute's history. With this gift, they have created a permanent endowment and entrusted the choice of how to direct the funds to the Institute's leadership—providing lasting resources coupled with uncommon freedom.

"Those within the Institute have a much better view of what the highest priorities are than we could have," Intel Corporation cofounder Gordon Moore explains. "We'd rather turn the job of deciding where to use resources over to Caltech than try to dictate it from outside."

Applying the Moores' donation in a way that will strengthen the Institute for generations to come, Caltech's president and provost have decided to dedicate the funds to fellowships for graduate students.

"Gordon and Betty Moore's incredibly generous gift will have a transformative effect on Caltech," says President Thomas F. Rosenbaum, holder of the Institute's Sonja and William Davidow Presidential Chair and professor of physics. "Our ultimate goal is to provide fellowships for every graduate student at Caltech, to free these remarkable young scholars to pursue their interests wherever they may lead, independent of the vicissitudes of federal funding. The fellowships created by the Moores' gift will help make the Institute the destination of choice for the most original and creative scholars, students and faculty members alike."

Further multiplying the impact of the Moores' contribution, the Institute has established a program that will inspire others to contribute as well. The Gordon and Betty Moore Graduate Fellowship Match will provide one additional dollar for every two dollars pledged to endow Institute-wide fellowships. In this way, the Moores' $100 million commitment will increase fellowship support for Caltech by a total of $300 million.

Says Provost Edward M. Stolper, the Carl and Shirley Larson Provostial Chair and William E. Leonhard Professor of Geology: "Investigators across campus work with outstanding graduate students to advance discovery and to train the next generation of teachers and researchers. By supporting these students, the Moore Match will stimulate creativity and excellence in perpetuity all across Caltech. We are grateful to Gordon and Betty for allowing us the flexibility to devote their gift to this crucial priority."

The Moores describe Caltech as a one-of-a-kind institution in its ability to train budding scientists and engineers and conduct high-risk research with world-changing results—and they are committed to helping the Institute maintain that ability far into the future.

"We appreciate being able to support the best science," Gordon Moore says, "and that's something that supporting Caltech lets us do."

The couple's extraordinary philanthropy already has motivated other benefactors to follow their example, notes David L. Lee, chair of the Caltech Board of Trustees.

"The decision that Gordon and Betty made—to give such a remarkable gift, to make it perpetual through an endowment, and to remove any restrictions as to how it can be used—creates a tremendous ripple effect," Lee says. "Others have seen the Moores' confidence in Caltech and have made commitments of their own. We thank the Moores for their leadership."

The Moores consider their gift a high-leverage way of fostering scientific research at a place that is close to their hearts. Before he went on to cofound Intel, Gordon Moore earned a PhD in chemistry from Caltech.

"It's been a long-term association that has served me well," he says.

Joining him in Pasadena just a day after the two were married, Betty Moore became active in the campus community as well. A graduate of San Jose State College's journalism program, she secured a job at the Ford Foundation's new Pasadena headquarters and also made time to come to campus to participate in community activities, including the Chem Wives social club.

"We started out at Caltech," she recalls. "I had a feeling that it was home away from home. It gives you a down-home feeling when you're young and just taking off from family. You need that connection somehow."

After earning his PhD from Caltech in 1954, Gordon Moore took a position conducting basic research at the Applied Physics Laboratory at Johns Hopkins University. Fourteen years and two jobs later, he and his colleague Robert Noyce cofounded Intel Corp. Moore served as executive vice president of the company until 1975, when he took the helm. Under his leadership—as chief executive officer (1975 to 1987) and chairman of the board (1987 to 1997)—Intel grew from a Mountain View-based startup to a giant of Silicon Valley, worth more than $140 billion today.

Moore is widely known for "Moore's Law," his 1965 prediction that the number of transistors that can fit on a chip would double every year. Still relevant 50 years later, this principle pushed Moore and his company—and the tech industry as a whole—to produce continually more powerful and cheaper semiconductor chips.

Gordon Moore joined the Caltech Board of Trustees in 1983 and served as chair from 1993 to 2000. That same year, he and his wife established the Gordon and Betty Moore Foundation, an organization dedicated to creating positive outcomes for future generations in the San Francisco Bay Area and around the world.

Among numerous other honors, Gordon Moore is a member of the National Academy of Engineering, a fellow of the Institute of Electrical and Electronics Engineers, and a recipient of the National Medal of Technology and the Presidential Medal of Freedom. 

Exclude from News Hub: 
No
News Type: 
In Our Community

Clean Water For Nepal

On the steep, tea-covered hillsides of Ilam in eastern Nepal, where 25 percent of households live below the poverty level and electricity is scarce, clean running water is scarcer still. What comes out of the region's centralized distribution systems is unfiltered, untreated, and teeming with nitrates, viruses, and E. coli. Purifying it is the consumer's responsibility.

But wood and yak dung, the only available fuels for boiling water, are precious, and purification tablets impart an unpleasant chlorine taste. The result? During the rainy season, local hospitals overflow with typhoid and gastrointestinal cases, mostly involving children and tainted runoff.

That may change, thanks to a gravity flow and slow-sand filtration system designed by Caltech undergraduates. They represent EWB-Caltech, one of the newest chapters of Engineers Without Borders USA, a nongovernmental organization (NGO) whose mission is to design and implement sustainable engineering projects in underprivileged communities.

Founded in 2012 by Sarah Wright (BS '13, bioengineering), EWB-Caltech already has about 30 members. This summer, a half dozen of the chapter's members are traveling to Ilam, where they are staying with local villagers while helping to oversee and implement the system's construction. The hillside will be partly excavated and then reconstructed. Layers of rock, gravel, sand, polyethylene sheeting, and soil will soak up rainfall, filtering and purifying it as it trickles into underground water. Pipes tapping into the underground water will run downhill to a small communal enclosure made of poured concrete, providing a reliable supply of clean water for about 100 households, with another 200 indirectly affected.

The students will not be working alone, says their mentor, environmental engineering consultant Gordon Treweek (MS '71, PhD '75) who is partnering with Caltech engineering students for the first time. "All EWB projects are community-driven, with the local workforce providing much of the labor. And we've received tremendous logistical support, including interpreters, from the Namsaling Community Development Center, an NGO in Ilam that had previously worked with an EWB chapter from the University of Colorado, Boulder."

According to EWB requirements the Nepalese must contribute 5 percent of the project's budget. EWB-Caltech copresidents Jihoon Lee (a senior in bioengineering) and Nauman Javed (a senior in physics) acknowledge that successfully coming up with the remainder—over $20,000—involved nearly continuous fund-raising. "We've been applying for grants, soliciting private donations, partnering with companies, especially water-related and environmental corporations, and we held a benefit dinner in January that was largely attended by Caltech faculty and friends," says Lee.

Both a 10-day on-site assessment trip last summer and this summer's trip were covered by individual donations and grants. The assessment trip took Treweek, Javed, and fellow Caltech senior Webster Guan (chemical engineering) to Ilam to meet with the NGO; to survey the local community of about 100 families to ascertain their needs and willingness to assist in the construction and ongoing maintenance of the water tap stand; and to gather predesign data for planning construction and estimating costs.

"The support we have received from Caltech alumni directly and through their networks of contacts at Northrop Grumman and Boeing has been invaluable in helping to keep this project moving forward," Treweek says.

After the assessment trip, the students spent the 2014–15 school year preparing detailed engineering documents using computer-aided design techniques. In this, they were assisted by the water-resource engineering firms Carollo Engineers and Montgomery Watson Harza, whose pro bono involvement did not surprise Treweek. "Consulting engineering firms frequently donate resources for projects like this," he says. "It's socially responsible, and it gives them a chance to observe future engineers addressing the four traditional phases of engineering: planning, design, fund-raising, and construction."

With preventable infectious diseases a leading component of Ilam's one-in-three infant mortality rate, the project includes a public-education component. "Besides training the local villagers who will maintain our spring-water source protection system," says Javed, "we plan to visit local schools, demonstrate how the system works, teach a little germ theory."

But no amount of careful planning can guarantee success. Similar projects have failed due to engineering problems, misaligned long-term governance strategies, eleventh-hour reprioritizations by the community, even simple miscommunication. "We've drafted plenty of contingency plans," affirms Lee, "with great support from EWB-USA. Their stringent review procedures covered every engineering and social aspect of the project, and they've given us detailed feedback on our drawings, schedules, and rationales."

After the implementation phase—which ends just one week before classes resume back in Pasadena—EWB-Caltech will continue to monitor the site for five to six years. By then the current members will have moved on and a new group of student leaders will have taken over this project. But for now, they are spending their summer trying to build a better world, drop by drop.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

New VP for Student Affairs Named

Joseph Shepherd (PhD '81), the C. L. "Kelly" Johnson Professor of Aeronautics and professor of mechanical engineering, is leaving his post as dean of graduate studies to succeed Anneila Sargent (MS '67, PhD '78), the Ira S. Bowen Professor of Astronomy, as vice president for student affairs. Shepherd's new role is effective September 15.

Sargent, who served the campus as the leader of student affairs the last eight years, announced in March that she was leaving the post to return to research and teaching full time. Shepherd, who joined the Caltech faculty in 1993, has served the last six years as the dean of graduate studies.

We recently sat down with Shepherd to talk about his past role and his new one, his strengths and goals, and his experience at Caltech.

 

Q: What does the vice president for student affairs do?

A: Student Affairs includes the offices of the undergraduate and graduate deans as well as obvious things like the registrar, undergraduate admissions, fellowships and study abroad, the career center, the health center, and the counseling center. It also includes things you might not think of—athletics; performing and visual arts, which includes the music programs, the theater program, the various arts programs, and all of the faculty and instructors that make these programs possible; and a whole group of organizations lumped under "auxiliaries."

The term "auxiliaries" is misleading, because they're central to student life. Housing and dining are the biggest parts, but there are services like the C-Store, the Red Door Café, the Caltech Store and Wired.

 

Q: What makes this role exciting for you?

A:  People speculate about what it is that makes Caltech a great school. A lot of folks say, "Well, it's because it's so small." But I think it's also because we work with people instead of creating some bureaucratic mechanism to solve problems. We say, "All right, what's the issue here? How can we resolve this?" instead of, "We need to create a rule. And then we need to create a group to enforce the rule." My approach is to ask, "What do we want the outcome to be?" In Student Affairs, you want the outcome to be something that supports the students, supports the faculty, and then you make sure that it's not going to adversely affect the Institute.

 

Q: Are there any changes coming, any initiatives you want to establish?

A: We need to think about how we build on the strengths we have and improve the things that we're weakest at. Before you make any changes to an organization, you need to understand those two things. There are a lot of parts to Student Affairs, so I need to understand the strong points of those organizations, and then get them to help me formulate what's important to do.

You always have to be careful of unintended consequences. As they say in chess, you want to think several moves deep. All right, suppose we do that. What will it mean for different parts of our population? Do we make this choice based on the data we have, or do we need more data? Will there be effects on people we haven't thought about? Maybe we need to go talk to those people.

When you have the authority to change things, you also have the responsibility to ask, "Are these the right changes?" Nothing happens in isolation. Anything you do is invariably going to wind up touching quite a few people.

 

Q: You've been dean of graduate studies since 2009. Did you consider taking a breather before jumping into this?

A: Well, much to my surprise, I found that being the dean of graduate studies was rewarding in many different ways. Sometimes you had to do some difficult things, but I actually liked being the dean. I was able, to some extent, to continue my research. I did some teaching—although last year I taught a major course all three terms, and I had my research group—and I was the dean of graduate studies. That taught me a lesson: a man's got to know his limitations.

So when I was asked if I would take this position, I did think about taking a break and not doing it. I enjoy my research and I enjoy teaching. I enjoy working with students, but I also enjoy trying to help the Institute as a whole. Here at Caltech, we pride ourselves on the notion that we have this very special environment. We have this small school, and we have dedicated professionals that work together with faculty to nurture that environment—having faculty who are invested in participating in the key administrative roles is essential.

When I was a graduate student here, my adviser was Brad Sturtevant [MS '56, PhD '60, and a lifelong faculty member thereafter]. Brad was the executive officer for aeronautics [1972-76]. He was in charge of the committee that built the Sherman Fairchild Library and he was on the faculty board. He emphasized to me that being involved in administration was just as valuable as all the other aspects of being a faculty member. He was a dedicated researcher, but he also felt strongly that you should be a good citizen. You should contribute.

 

Q: It seems like this is more than just a duty to you, though.

A: I'm looking forward to it. I'm also very conscious of the responsibility. I think it's going to be important for us all to think about how we maintain the excellence of the Institute and that we imagine how this place is going to evolve. As society evolves around us, we will naturally wind up changing. We need to do that in a thoughtful way so that we continue to be the special organization that we are.

At the end of the day, I'm counting on help from the faculty and staff. Caltech works because of the committed individuals within our organizations, the personal connections we form as we work together and the cooperation across the campus that these connections enable.  It's a collective enterprise.

I think administration is not something that's done to people. It's being responsible for making sure that folks have the right work environment, the right job assignments, and the right resources. It's making sure we're doing the right things with the finite resources we have. One of our former presidents said something that's always stuck with me: an administrator's goals are not about their own career so much as helping the careers of others. You need to think about how you're helping the people working for you, because they have goals and aspirations. That's where you take your satisfaction.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

New Dean of Graduate Studies Named

On July 1, 2015, Doug Rees, the Roscoe Gilkey Dickinson Professor of Chemistry, will begin serving as the new dean of graduate studies at Caltech.

"Doug's experience and concern with graduate education make him an ideal choice for dean of graduate studies. I am very pleased that he is willing to make this commitment to the Institute and its students," says Anneila Sargent, vice president for student affairs and the Ira S. Bowen Professor of Astronomy.

As the new dean, Rees will be the principal administrator and representative of Caltech's graduate education program, responsible for attending to concerns regarding the welfare of graduate students as well as for upholding the Institute's rules and policies.

"There are many groups essential to the effective operation of our graduate program that I want to get to know better, starting with the graduate students, the Graduate Office staff, and the option administrators and option reps," says Rees. "In my 26 years at Caltech, I've gained an appreciation for how the graduate programs in biochemistry and molecular biophysics and in chemistry operate, but the cultures in different options across campus can vary significantly, and I look forward to better understanding these distinctions."

Rees says that he is also very much looking forward to working directly with graduate students, staff, and faculty on behalf of the graduate program. Of particular interest during his tenure will be issues relating to the well-being and professional development of graduate students.

"I find research to be an adventure that, while exhilarating, is also challenging, frustrating, and even stressful; those aspects, however, are not incompatible with having a positive student experience and a supportive environment," Rees says. He adds that his priorities will be to raise fellowship support, increase the diversity of the graduate student body, and ensure that students have access to appropriate support services such as health care, counseling, and day care. "In addition, I also hope to be able to explore mechanisms to better prepare students for life after Caltech, including both academic and nonacademic career options," he says.

In his new post, Rees will take the place of C. L. "Kelly" Johnson Professor of Aeronautics and Mechanical Engineering Joseph Shepherd, who has served as the dean of graduate studies since 2009. "Joe leaves big shoes to fill and the campus owes him a huge debt of gratitude for all he has accomplished as dean of graduate studies. What I have learned from watching him in action over the past six years, and more recently as he has been helping me during this transition period, is that the most important quality for the dean is to care about the students—and I will definitely be working to follow his example," Rees says.

Rees received his undergraduate degree from Yale University in 1974 and his PhD from Harvard in 1980, becoming a professor at Caltech in 1989. An investigator with the Howard Hughes Medical Institute, Rees also served as the executive officer for chemistry from 2002 to 2006 and the executive officer for biochemistry and molecular biophysics from 2007 to 2015.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Caltech Seniors Win Library Friends Thesis Prize

Two Caltech seniors, Adam Jermyn and Kerry Betz, were named as winners of this year's Library Friends' Senior Thesis Prize. The Thesis Prize is intended to encourage undergraduates to complete a formal work of scholarship as a capstone project for their undergraduate career and to recognize sophisticated in-depth use of library and archival research. For their achievement, recipients of the $1,200 prize are listed in the commencement program.

Caltech faculty nominate seniors whose theses they deem to be deserving of the prize. Nominated students then supply a research narrative that explains their research methodology, detailing not only the sources they used, but the way they obtained access to them.

Adam Jermyn, a physics major from Longmeadow, Massachusetts, won the prize for his thesis titled "The Atmospheric Dynamics of Pulsar Companions." The Library Friends committee described it as a "tour de force in its breadth of scholarship, creativity and significance," and Jermyn's faculty adviser Sterl Phinney, professor of theoretical astrophysics and executive officer for astronomy, said in his nomination that the thesis is "comparable to the best PhDs in impact and innovation."

Jermyn's work is a study of the ways in which the radiation emitted from pulsars changes the atmospheres of other nearby stars. Pulsars are a highly magnetized and rapidly rotating type of neutron star, the dense remnants of a star gone supernova. They often orbit closely together with a low-mass "companion star" that can receive enormous amounts of radiation from the nearby pulsar.

"It's been a really fantastic experience. My mentor, Professor Phinney, has been amazing at encouraging me in productive directions and enthusiastically went along with me when I wanted to go off in a strange direction on a hunch," Jermyn says. "You think you've rounded the corner and found the answer, only to realize that you've just walked into more rich and complicated phenomena."

Jermyn, also the recipient of a Hertz Fellowship, a Marshall Scholarship, and a National Science Foundation Graduate Research Fellowship, will start his graduate work at the University of Cambridge in the fall.

 

Kerry Betz, a chemistry major from Boulder, Colorado, won the prize for her thesis titled "A Novel, General Method for the Construction of C-Si Bonds by an Earth-Abundant Metal Catalyst." Robert Grubbs, the Victor and Elizabeth Atkins Professor of Chemistry and Betz's faculty adviser, praised the thesis in his nomination for its "significance, creativity, and novelty."

Betz's work concerns the use of a new catalyst to form carbon-silicon bonds through a process called silylation. The newly discovered catalyst is highly efficient and can operate at room temperature and pressure. Traditionally these reactions require expensive and inefficient precious metal catalysts, such as platinum or palladium. Betz's catalyst is made from the abundant metal potassium, which is more effective than state-of-the-art precious metal complexes at running very challenging chemical reactions.

"I've done this research over the last three years, and I really enjoyed how writing it up brought it all together," says Betz. "Writing up my work revealed new questions and directions to pursue. It showed me how unpredictable and exciting research can be." She will continue her research at Caltech for a year and will then begin graduate studies at Stanford University in the fall of 2016.

 

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Senior Spotlight: Justin Koch

Caltech's class of 2015 is group of smart, creative, and curious individuals. They are analytical thinkers, performers, researchers, engineers, athletes, and leaders who are ready to apply the lessons they have learned from Caltech's rigorous academic environment and the unique experiences they had as part of this close-knit community to pursue future challenges. 

We talked to two of these graduates, Justin Koch and Phoebe Ann, about their years at Caltech and what will come next.

Other graduates share their stories in videos posted on Caltech's Facebook page.

Watch as they and their peers are honored at Caltech's 121st commencement on June 12 at 10 a.m. If you can't be in Pasadena, the ceremony will be live-streamed at http://www.ustream.tv/caltech. You may also follow the action and share your favorite commencement moments on Facebook, Twitter, and Instagram by using #Caltech2015 in your tweets and postings.

 

Justin Koch

Major: Mechanical Engineering
House: Blacker
Hometown: Townsend, Delaware

Why did you originally decide to come to Caltech?

The rigorous academic environment was certainly a consideration in choosing Caltech. However, I really made my decision after visiting the campus for Prefrosh Weekend. I found the housing system to be a unique experience that was something I had not seen at other schools.

Were you involved in extracurricular activities at Caltech?

The main extracurricular activity I'm involved with is the Caltech Robotics Team. I was part of the group that founded the club my freshmen year, and for the past two years I've led the team through my role as project manager. I've been interested in robotics since middle school and have been involved with robotics teams since sixth grade. We are currently building an underwater autonomous vehicle for a competition called RoboSub.

This past year I've also served as president of Blacker House. I've enjoyed the opportunity to give back to my house, which has definitely helped me enjoy my experience at Caltech.

What was your most memorable experience?

One of my most memorable experiences at Caltech was participating in the ME 72 competition my junior year. We spent two terms designing and building robots to compete in a competition involving head-to-head battle between robots trying to get a soup can to the top of a raised platform. Our hard work paid off and we ended up winning the competition. Though the competition was memorable, I'll never forget all the long hours we spent building the robots.

What did you not know about Caltech that you learned after being here?

I did not fully understand quite how focused Caltech is on theory and research until after arriving here. The rigor of the classes was definitely much harder than anything I had ever done before. However, through my involvement with the Caltech Robotics Team I've been able to balance my knowledge of theory through classes with the applied technical skills I learn through the team.

What will you be doing after Caltech?

After Caltech I will be working as a robotics engineer at the NASA Jet Propulsion Lab. I'll be working in section 347 on robotic systems for a variety of environments, including land, space, and ocean applications.

Throughout my career I hope to work on the cutting edge of robotics. Although I am a mechanical engineer, I enjoy working on systems that require skills in not only mechanical engineering but electrical engineering and computer science as well.

Any words of advice to incoming students?

My advice to incoming students is to find an activity besides classwork that you're passionate about. Caltech can be a very intense place, so it's important to find another outlet besides classes. If a club that you want to be a part of doesn't exist, then take the initiative to start one. At Caltech it's very easy to start a club and there are a lot of resources out there to help.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Senior Spotlight: Phoebe Ann

Caltech's class of 2015 is group of smart, creative, and curious individuals. They are analytical thinkers, performers, researchers, engineers, athletes, and leaders who are ready to apply the lessons they have learned from Caltech's rigorous academic environment and the unique experiences they had as part of this close-knit community to pursue future challenges. 

We talked to two of these graduates, Phoebe Ann and Justin Koch, about their years at Caltech and what will come next.

Other graduates share their stories in videos posted on Caltech's Facebook page.

Watch as they and their peers are honored at Caltech's 121st commencement on June 12 at 10 a.m. If you can't be in Pasadena, the ceremony will be live-streamed at http://www.ustream.tv/caltech. You may also follow the action and share your favorite commencement moments on Facebook, Twitter, and Instagram by using #Caltech2015 in your tweets and postings.

Phoebe Ann

Major: Biology and English
House: Lloyd
Hometown: Irvine, California

Why did you originally decide to come to Caltech?

I was attracted by the small class size, and I've found to this day that it is one of Caltech's strongest advantages. Caltech is also extremely supportive of a student's individual endeavors, as demonstrated by the numerous awards and programs that promote independent research, volunteer work, or extracurricular interest projects. The most significant example of this is the Caltech Y, through which I was able to learn how to implement a personal idea or passion into a tangible program that my fellow students and I can all enjoy.

Were you involved in extracurricular activities at Caltech?

My most significant extracurricular activities were implemented through the Caltech Y. My proudest accomplishments were organizing alternative spring break trips to New York for Hurricane Sandy relief and to Costa Rica for community construction. Prior to Caltech, I had never traveled independently, let alone led a group of students to a foreign country. These activities were absolutely crucial to developing myself into an effective community member and future physician.

What were your most memorable experiences?

Aside from my Caltech Y activities, my most memorable experiences were interactions with my fellow Lloydies during freshman year. It was an exciting time of realizing my similarities and differences with others, as well as my ability to function without sleep.

What did you not know about Caltech that you learned after being here?

I did not know how hard Caltech pushed its students. I struggled tremendously upon arriving at Caltech because I was intimidated by all the students who seemed "naturally" intelligent. But Caltech forced me to just shut up and get to work. And when all was said and done, I was able to accomplish so much more than I had ever imagined.

What will you be doing after Caltech?

I will be studying medicine at Feinberg Medical School at Northwestern University in Chicago. After, I would like to be a surgeon or a pediatrician, depending on how well I can maintain a work-life balance.

Any words of advice to incoming students?

Join the Caltech Y! It is critical not only to find a work-life balance outside of the house system, but also to ground your scientific endeavors in a broader purpose: to serve and better your local, national, and international community.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Students Try Their Hand at Programming DNA

In a new class called Design and Construction of Programmable Molecular Systems (BE/CS 196a), taught this term by Assistant Professor of Bioengineering Lulu Qian, undergraduate and graduate students in computer science, computation and neural systems, and bioengineering came together to study a new intersection of their fields: biomolecular computation. "Molecular programming is a really young research field that only has a couple of decades of history," said Qian, introducing the class's final project presentations on Friday, June 5. "But it offers a huge potential for transforming all molecular sciences into information technology."

In recent years, in order to "program" synthetic DNA sequences to accomplish a diverse range of functions, bioengineers have begun to take advantage of their ability to predict how DNA strands interact, exchange their binding partners, and fold.

Over the course of 10 weeks, three student teams in BE/CS 196a had the chance to specialize in one of the possibilities afforded by this technology. Working in the wet lab—a lab where biochemical materials can be handled in test tubes of liquids—one group attempted to simulate rudimentary neural networks that recognize the presence or absence of DNA strands, each representing information about four Caltech undergrad houses. Another designed molecules to compute multistep logic functions that implement two particular "transition rules" involved in a famous conjecture concerning a theoretical model of computation called "cellular automata."

Students in the third group designed DNA "origami." In DNA origami, a technique first developed at Caltech, DNA molecules automatically fold into prescribed shapes that may contain patterns of attachment sites—like a smiley face or a miniature circuit board—based on the molecules' designated sequence.

As used by Qian's students, junior Aditya Karan, a computer science major, and first-year bioengineering graduate student James Parkin, the process begins with a single-strand loop of DNA—the genome of virus M13, which has over 7,000 nucleotides. "Staples" made of matching sequences are used to connect specific points on the loop, so that these points are pulled together, causing the loop to fold into the desired shape. The team focused their efforts on manipulating a set of microscopic square tiles of DNA. In one experiment they created complex patterns on the surface of the squares; in another they designed the tiles to form heart-shaped arrays consisting of 11 tiles of four distinct types.

Although complete control of molecular systems is a long way off, these technologies offer what is essentially a programming language capable of interfacing with a biochemical environment. DNA folding, for example, could be used to design microscopic "boxes" that open and release a therapeutic drug only under certain chemical conditions on the surface of or inside specific type of cells. "What has kind of amazed us is how much we can get done with just DNA," says Parkin. "With DNA, we can design complicated things from scratch. We can't do that with proteins yet."

As Qian notes, programming molecular systems is an area "full of imagination and creativity."

"That's why I want to share these adventures with Caltech students," she says.

Writer: 
Exclude from News Hub: 
No
News Type: 
Research News

Students Win National and International Prizes

Caltech undergraduate and graduate students have collected an impressive array of awards this year, including three Fulbright grants, two Goldwater Scholarships, two Watson Fellowships, two Hertz Fellowships, a Soros Fellowship, a Marshall Scholarship, a Gates Cambridge Scholarship, and 31 National Science Foundation Fellowships.

Fulbright Fellowships

Seniors Jonathan Liu, Charles Tschirhart, and Caroline Werlang were selected as Fulbright Scholars. The Fulbright Program is the flagship international exchange program sponsored by the U.S. government. Seniors and graduate students who compete in the U.S. Fulbright Student Program can apply to one of the more than 160 countries whose universities are willing to host Fulbright Scholars. The scholarship sponsors one academic year of study or research abroad after the bachelor's degree. Liu, Tschirhart, and Werlang will be studying next year in Germany, England, and Switzerland, respectively.

Barry M. Goldwater Scholarships

Sophomore Saaket Agrawal and junior Paul Dieterle were awarded Barry M. Goldwater scholarships for the 2015–16 academic year. The Barry Goldwater Scholarship and Excellence in Education Program was established by Congress in 1986 to award scholarships to college students who intend to pursue research careers in science, mathematics, and engineering.

Thomas J. Watson Fellowships

Seniors Janani Mandayam Comar and Aaron Krupp were named 2015 Thomas J. Watson Fellowship winners. Each fellowship is a grant of $30,000 awarded to seniors graduating from a selected group of colleges. According to the Watson Foundation's website, "Fellows conceive original projects, execute them outside of the United States for one year and embrace the ensuing journey. They decide where to go, who to meet and when to change course." Fifty fellows were selected from a pool of nearly 700 candidates.

Hertz Fellowships

Caltech seniors Adam Jermyn and Charles Tschirhart were named 2015 Hertz Fellowship winners. Selected from a pool of approximately 800 applicants, the awardees will receive up to five years of support for their graduate studies. According to the Hertz Foundation, fellows are chosen for their intellect, their ingenuity, and their potential to bring meaningful improvement to society.

Paul & Daisy Soros Fellowship for New Americans

Mohamad Abedi, a PhD candidate in bioengineering, received a Paul & Daisy Soros Fellowship for New Americans. Thirty fellows, selected from nearly 1,200 applicants "for their potential to make significant contributions to U.S. society, culture, or their academic field," receive up to $90,000 to help cover two years of tuition, and other educational and living expenses, while studying any subject at any university in the United States. The fellowship was established to assist young new Americans—permanent residents, naturalized citizens, or children of naturalized citizen parents—at critical points in their educations.

Gates Cambridge Scholarship

Senior Connie Hsueh, a physics major, was awarded a 2015 Gates Cambridge Scholarship that will fund graduate studies at the University of Cambridge. The Gates Cambridge Scholarship program, established in 2000 through a donation to Cambridge University from the Bill and Melinda Gates Foundation, recognizes young people from around the world who not only excel academically, but also display a commitment to social issues and bettering the world. Hsueh was selected from a pool of 755 applicants.

Marshall Scholarship

Senior Adam Jermyn received the 2015 Marshall Scholarship to pursue graduate studies in Great Britain. Funded by the British government, the Marshall Scholarship provides support for two years of post–bachelor's degree study—covering a student's tuition, books, living expenses, and transportation costs—at any university in the United Kingdom. Each year more than 900 students from across the nation compete for this prestigious scholarship.

NSF Graduate Research Fellowships

The National Science Foundation (NSF) selected 31 current Caltech students and 12 alumni to receive its Graduate Research Fellowships. The awards support three years of graduate study within a five-year fellowship period in research-based master's or doctoral programs in science or engineering.

Caltech's awardees for 2015 are seniors Bridget Connor, Boyu Fan, Mark Greenfield, Bryan He, Adam Jermyn, Robert F. Johnson, Ellen Price, Charles Tschirhart, Max Wang, Benjamin Wang, Caroline Werlang, Patrick Yiu, and Andy J. Zhou; and graduate students Louisa Avellar, Dawna Bagherian, Kevin Cherry, Rebecca Glaudell, Elizabeth Goldstein, Denise Grunenfelder, Nina Gu, Elizabeth Holman, Erik Jue, Kyle Metcalfe, Kelsey Poremba, Denise Schmitz, Rebekah Silva, Chanel Valiente, Grigor Varuzhanyan, Ryan Witkosky (also an alumnus), Emily Wyatt, and Nicole Xu. Caltech alumni in the 2015 class of Graduate Fellows are Karen Dowling, Melissa Hubisz, Pawel Latawiec, Laura Lindzey, Katja Luxem, Rocio Mercado, Bertrand Ottino-Loffler, David Sell, Benjamin Suslick, Jordan Theriot, Ryan Thorngren, and Matthew Voss.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Biology, With a Beat

This term, students in Biology 1—Principles of Biology—were offered a novel alternative to the traditional final exam: the opportunity to create a two-to-four-minute video explaining some aspect of biology in an interesting, entertaining and, yes, musical way.

Bi 1 is a large lecture course for nonmajors and, for most of them, as close as they will come to biology during their undergraduate career. As the class's instructor, Dianne Newman, professor of biology and geobiology, explains, "It's almost an absurd challenge. How do you teach biology in a substantive and engaging way in 10 weeks to students whose primary interests lie elsewhere?"

Newman found at least one way to meet that challenge. "I have a mid-session break in my class because it's an hour and a half long," says Newman. "After 45 minutes, I show a short video that relates to the content of my lecture just to break things up, to give students a chance to stretch and reengage." One day in April, Professor Newman showed a rap video on Hox gene development created by Stanford students. "The Hox genes are regulatory genes in eukaryotes that are critical for development," says Newman. "It was such a clever video. And so, off the cuff, I said to my Bi 1 students, 'These Stanford kids are pretty good. If any of you can come up with something equally outstanding, I'll give you an automatic A in the class.'"

After class, to Newman's surprise, a student came up to ask exactly what the rules were for this automatic A. If they did a video, could they skip the midterm? Could they skip the final? What about the assignment requiring students to write a hypothesis-driven paper on a topic of their choice? Disarmed, Newman promised she would soon send the class an email that would explain it all. She reflected on the idea and then laid out the rules for the Bi 1 video challenge: an automatic A on just the final exam, but only if the video adhered to a stringent set of rules regarding originality, scientific content, and aesthetic value.

Newman was skeptical anyone would take on the challenge, but in the end, six videos were submitted. All were screened on June 4, the last day of class. All of the students in the class were given clickers to vote on each video—giving it an A, B, or C, based on how well the video fulfilled the criteria. Newman promised to take their votes into consideration as she made her decisions about the adequacy of each video. Newman further enlisted some special A-list guests to attend the showing and give their reactions: Harry Gray, the Arnold O. Beckman Professor of Chemistry and founding director of the Beckman Institute; Jonas Peters, the Bren Professor of Chemistry; Cindy Weinstein, vice provost and professor of English; and Bil Clemons, professor of biochemistry. As an added surprise to the students, President Thomas Rosenbaum stopped in for the viewing.

Student videos covered a range of topics, from photosynthesis to metabolism to respiration, and employed a variety of styles, with each video showcasing the unique personalities and creative talents of their creators. Tyler Perez (freshman, planetary science) and Nicholas Meyer (freshman, physics), for example, created a video titled "A Rap about GFP" (GFP, or green fluorescent protein, is used as a marker to visualize protein localization and gene expression). Perez notes that the main challenge was not having a dedicated cameraman, creating the need for "planning the shots beforehand, setting up the tripod, running to the scene to do the acting/dubbing, running back to check the shot, move the camera, repeat."

Rachael Morton (freshman, computer science) and Roohi Dalal (freshman, physics and history) described details about the nuclei of differentiated cells to the tune of Taylor Swift's "Blank Space" in a video they called "Enucleated Space." Morton recalls spending "a few interesting afternoons walking around campus in formal wear, lugging around cameras while lip syncing, as confused-looking tour groups and classmates passed by."

Ashwin Balakrishna (freshman, electrical engineering) and Kelly Woo (freshman, electrical engineering) collaborated on "Photosynthesis," rapping out lyrics like "ATP synthase she the center of it all/I got H+ gradient and now it comes into call" (inspired by Drake's rap video for "Energy"). Woo says, "As corny as this sounds, shooting this video really allowed me to slow down and appreciate how beautiful our campus is."

This may sound like a lot of fun and only a little science, but the Caltech faculty reviewers were impressed. "I'm a little prouder to be a professor at Caltech today," Peters said.

Harry Gray, after viewing the video on respiration created by Ashwin Hari (freshman, computer science) and Hanzhi Lin (freshman, computer science), humorously noted, "I've been studying respiration for a long time, but I learned more in this video than I have in 30 years. I hope you guys will make a lot more videos. I'm going to come to all of them so I don't have to spend all that time reading stupid journals."
 

While reviewing freshman Tara Shankar's (freshman, computer science) video, "Metabolism, Let's Break it Down," Jonas Peters tried to recruit the computer science major to chemistry. He even offered a powerful incentive: "If Professor Newman doesn't give you an A on the final for this video, you can take any course in CCE [the Division of Chemistry and Chemical Engineering], and we will give you an A."

After the last video was shown, Peters, on a more serious note, drew students' attention to all the opportunities that they—as nonmajors in biology—could bring to biology from their very different "corners of the campus."

"Professor Newman's enthusiasm for the class was mirrored by the joie de vivre of the students, who sang, danced, and rapped their way through the central themes of Bi 1," says Weinstein. "Seeing students bring such intelligence, creativity, and downright fun to their studies reminds us of the rewards that come to teachers who inspire."

So did these students earn their prize, the opportunity to spend another afternoon singing and dancing their way across campus while their fellow Bi 1 students grind out their final? The jury—a one-woman jury named Dianne Newman—is still out, but it looks as though the Bi 1 video challenge will be finding its way onto her next Bi 1 syllabus.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Pages

Subscribe to RSS - student_life