08/06/2008 07:00:00
Kathy Svitil
Individuals with synesthesia perceive the world in a different way from the rest of us. Because their senses are cross-activated, some synesthetes perceive numbers or letters as having colors or days of the week as possessing personalities, even as they function normally in the world. Now, researchers at the California Institute of Technology have discovered a type of synesthesia in which individuals hear sounds, such as tapping, beeping, or whirring, when they see things move or flash. Surprisingly, the scientists say, auditory synesthesia may not be unusual--and may simply represent an enhanced form of how the brain normally processes visual information.
07/30/2008 07:00:00
Kathy Svitil
Organisms ranging from humans to plants to the lowliest bacterium use molecules to communicate. Some chemicals trigger the various stages of an organism's development, and still others are used to attract members of the opposite sex. Researchers at the California Institute of Technology have now found a rare kind of signaling molecule in the nematode worm Caenorhabditis elegans that serves a dual purpose, working as both a population-control mechanism and a sexual attractant.
07/29/2008 07:00:00
Kathy Svitil

Bars abound in spiral galaxies today, but this was not always the case. A group of 16 astronomers, led by Kartik Sheth of NASA's Spitzer Science Center at the California Institute of Technology, has found that bars tripled in number over the past seven billion years, indicating that spiral galaxies evolve in shape.

07/28/2008 07:00:00
Kathy Svitil

Researchers at the California Institute of Technology have turned science fiction into reality with their development of a super-compact high-resolution microscope, small enough to fit on a finger tip. This "microscopic microscope" operates without lenses but has the magnifying power of a top-quality optical microscope, can be used in the field to analyze blood samples for malaria or check water supplies for giardia and other pathogens, and can be mass-produced for around $10.

07/21/2008 07:00:00
Kathy Svitil
Geoscientists at the California Institute of Technology have come up with a new explanation for the formation of monsoons, proposing an overhaul of a theory about the cause of the seasonal pattern of heavy winds and rainfall that essentially had held firm for more than 300 years.
07/18/2008 07:00:00
elisabeth nadin
Viruses achieve their definition of success when they can thrive without killing their host. Now, biologists Pamela Bjorkman and Zhiru Yang of the California Institute of Technology have uncovered how one such virus, prevalent in humans, evolved over time to hide from the immune system.
07/15/2008 07:00:00
Kathy Svitil
Some parents of children with autism evaluate facial expressions differently than the rest of us--and in a way that is strikingly similar to autistic patients themselves, according to new research by neuroscientist Ralph Adolphs of the California Institute of Technology and psychiatrist Joe Piven at the University of North Carolina at Chapel Hill.
07/10/2008 07:00:00
Kathy Svitil

Astronomers have uncovered an extreme stellar machine -- a galaxy in the very remote universe pumping out stars at a surprising rate of up to 4,000 per year. In comparison, our own Milky Way galaxy turns out an average of just 10 stars per year.

06/25/2008 07:00:00
elisabeth nadin
The surface landscape of Mars, divided into lowlands in the north and highlands in the south, has long perplexed planetary scientists. Was it sculpted by several small impacts, via mantle convection in the planet's interior, or by one giant impact? Now scientists at the California Institute of Technology have shown through computer modeling that the Mars dichotomy, as the divided terrain has been termed, can indeed be explained by one giant impact early in the planet's history.
06/09/2008 07:00:00
Kathy Svitil
Contrary to what one might imagine, the way in which each of us interacts with the world is not a simple matter of seeing (or touching, or smelling) and then reacting. Even the best baseball hitter eyeing a fastball does not swing at what he sees. The neurons and neural connections that make up our sensory systems are far too slow for this to work. "Everything we sense is a little bit in the past," says Richard A. Andersen of the California Institute of Technology, who has now uncovered the trick the brain uses to get around this puzzling problem.

Pages