Astronomers "weigh" pulsar's planets

For the first time, the planets orbiting a pulsar have been "weighed" by measuring precisely variations in the time it takes them to complete an orbit, according to a team of astronomers from the California Institute of Technology and Pennsylvania State University.

Reporting at the summer meeting of the American Astronomical Society, Caltech postdoctoral researcher Maciej Konacki and Penn State astronomy professor Alex Wolszczan announced today that masses of two of the three known planets orbiting a rapidly spinning pulsar 1,500 light-years away in the constellation Virgo have been successfully measured. The planets are 4.3 and 3.0 times the mass of Earth, with an error of 5 percent.

The two measured planets are nearly in the same orbital plane. If the third planet is co-planar with the other two, it is about twice the mass of the moon. These results provide compelling evidence that the planets must have evolved from a disk of matter surrounding the pulsar, in a manner similar to that envisioned for planets around sun-like stars, the researchers say.

The three pulsar planets, with their orbits spaced in an almost exact proportion to the spacings between Mercury, Venus, and Earth, comprise a planetary system that is astonishingly similar in appearance to the inner solar system. They are clearly the precursors to any Earth-like planets that might be discovered around nearby sun-like stars by the future space interferometers such as the Space Interferometry Mission or the Terrestrial Planet Finder.

"Surprisingly, the planetary system around the pulsar 1257+12 resembles our own solar system more than any extrasolar planetary system discovered around a sun-like star," Konacki said. "This suggests that planet formation is more universal than anticipated."

The first planets orbiting a star other than the sun were discovered by Wolszczan and Frail around an old, rapidly spinning neutron star, PSR B1257+12, during a large search for pulsars conducted in 1990 with the giant, 305-meter Arecibo radio telescope. Neutron stars are often observable as radio pulsars, because they reveal themselves as sources of highly periodic, pulse-like bursts of radio emission. They are extremely compact and dense leftovers from supernova explosions that mark the deaths of massive, normal stars.

The exquisite precision of millisecond pulsars offers a unique opportunity to search for planets and even large asteroids orbiting the pulsar. This "pulsar timing" approach is analogous to the well-known Doppler effect so successfully used by optical astronomers to identify planets around nearby stars. Essentially, the orbiting object induces reflex motion to the pulsar which result in perturbing the arrival times of the pulses. However, just like the Doppler method, the pulsar timing method is sensitive to stellar motions along the line-of-sight, the pulsar timing can only detect pulse arrival time variations caused by a pulsar wobble along the same line. The consequence of this limitation is that one can only measure a projection of the planetary motion onto the line-of-sight and cannot determine the true size of the orbit.

Soon after the discovery of the planets around PSR 1257+12, astronomers realized that the heavier two must interact gravitationally in a measurable way, because of a near 3:2 commensurability of their 66.5- and 98.2-day orbital periods. As the magnitude and the exact pattern of perturbations resulting from this near-resonance condition depend on a mutual orientation of planetary orbits and on planet masses, one can, in principle, extract this information from precise timing observations.

Wolszczan showed the feasibility of this approach in 1994 by demonstrating the presence of the predicted perturbation effect in the timing of the planet pulsar. In fact, it was the first observation of such an effect beyond the solar system, in which resonances between planets and planetary satellites are commonly observed. In recent years, astronomers have also detected examples of gravitational interactions between giant planets around normal stars.

Konacki and Wolszczan applied the resonance-interaction technique to the microsecond-precision timing observations of PSR B1257+12 made between 1990 and 2003 with the giant Arecibo radio telescope. In a paper to appear in the Astrophysical Journal Letters, they demonstrate that the planetary perturbation signature detectable in the timing data is large enough to obtain surprisingly accurate estimates of the masses of the two planets orbiting the pulsar.

The measurements accomplished by Konacki and Wolszczan remove a possibility that the pulsar planets are much more massive, which would be the case if their orbits were oriented more "face-on" with respect to the sky. In fact, these results represent the first unambiguous identification of Earth-sized planets created from a protoplanetary disk beyond the solar system.

Wolszczan said, "This finding and the striking similarity of the appearance of the pulsar system to the inner solar system provide an important guideline for planning the future searches for Earth-like planets around nearby stars."

Contact: Robert Tindol (626) 395-3631


Why Fearful Animals Flee—or Freeze

PASADENA, Calif. –In most old-fashioned black-and-white horror flicks, it always seems there's some hapless hero or heroine who gets caught up in a life-threatening situation. Instead of making the obvious choice--to run like hell--he/she freezes in place. That decision, alas, leads to their ultimate demise.

While their fate was determined by bad scriptwriting, scientists already know that in real life, environment and experience influence defensive behaviors. Less understood are the neural circuits that determine such decisions. Now, in an article in the May 1 issue of the Journal of Neuroscience, researchers at the California Institute of Technology have developed an experimental model using mice that can map and manipulate the neural circuits involved in such innate behaviors as fear.

Raymond Mongeau, Gabriel A. Miller, Elizabeth Chiang, and David J. Anderson, in work performed at Caltech, manipulated either a flight or freeze reaction in mice through the use of an ultrasonic auditory stimulus, and further, were able to alter the mouse's behavior by making simple changes in the animal's environment. They also found that flight and freezing are negatively correlated, suggesting that a kind of competition exists between these alternative defensive motor responses. Finally, they have begun to map the potential circuitry in the brain that controls this competition.

"Fear and anxiety are important emotions, especially in this day and age," says Anderson, a Caltech professor of biology and an investigator with the Howard Hughes Medical Institute. "We know a lot about how the brain processes fear that is learned, but much less is known about innate or unlearned fear. Our results open the way to better understanding how the brain processes innately fearful stimuli, and how and where anxiety affects the brain to influence behavior."

Using the ultrasonic cue, the researchers were able to predict and manipulate the animal's reaction to a fearful situation. They found that mice exposed to the ultrasonic stimulus in their home cage (a familiar environment) predominantly displayed a flight response. Those placed in a new cage (an unfamiliar environment), or treated with foot shocks the previous day, primarily displayed freezing and less flight.

Anderson noted that in previous fear "conditioning" experiments, where mice learn to fear a neutral tone associated with a footshock, the animals show only freezing behavior and never flight, even though in the wild, flight is a normal and important fear response to predators. This suggests that the ultrasonic stimulus used by Anderson and colleagues is tapping into brain circuits that mediate natural, or innate, fear responses that include flight as well as freezing.

What causes the shift from flight to freezing behavior? Probably high anxiety and stress, say the authors, caused by an unfamiliar environment or the foot shocks. The researchers suggest that freezing requires a higher threshold level of anticipatory fear (the heroine inside a dark, spooky house) before it can be elicited by the ultrasound.

Most brain researchers believe the brain uses a hierarchy of neural systems to determine which defensive behaviors, like flight or freezing, to use. These range from an evolutionary older neural system that generates "quick and dirty" defensive strategies, to more evolved systems that produce slower but more sophisticated reactions. These systems are known to interact, but the neural mechanisms that decide which response wins out are not understood.

One of the goals of their work was to map the brain regions that control the behaviors triggered by the fear stimulus, to observe whether any change in brain activity correlated with the different defensive behaviors. They achieved this, all the way down to the resolution of a single neuron, by mapping the expression pattern of the c-FOS gene, a so-called "immediate early gene" that is turned on when neurons are excited. The switching on of the c-FOS gene can therefore be used as an indication of neuronal activation.

A map of the c-FOS expression patterns during flight vs. freezing revealed that mice displaying freezing behavior had neural activity in different regions of the brain than those that fled. Some of these regions were previously known to inhibit each other, providing a possible explanation for the apparent competition between flight and freezing observed in the intact animal.

Anderson notes that more work needs to be done to pin down where and how anxiety modifies defensive behavior. "This system may also provide a useful model for understanding the neural substrates of human fear disorders, like panic and anxiety," says Anderson, "as well as provide a model for developing drugs to treat them."

Contact: Mark Wheeler (626) 395-8733

Visit the Caltech Media Relations Website at



Caltech biology professor to directresearch program on brain signaling

California Institute of Technology biologist Mary Kennedy has been named project director for a $4 million federal project grant to better understand how the brain processes signals. Progress could lead to new insights into how drugs can be better custom-designed to treat a host of neurodegenerative disorders, mental illnesses, and disabilities, including Alzheimer's disease, depression, and schizophrenia.

The funding will come from the National Institute of Neurological Disorders and Stroke, a component of the National Institutes of Health (NIH). According to Kennedy, who is the Allen and Lenabelle Davis Professor of Biology at Caltech, the five-year project is innovative because it will integrate advanced computational methods with experiments to better analyze and model calcium signaling in the brain. In addition to Kennedy's research group at Caltech, the program will involve research teams from the Salk Institute, Cold Spring Harbor Laboratory, and the University of North Carolina.

"Another aspect of this research that is quite new is the application of these kinds of methods at the molecular level," she says. "This is important because, for about 20 years or so, it wasn't really possible to be rigorously quantitative about the biochemical functions of synapses at the molecular level. This was because we didn't know all the molecules that were involved."

With new advances, especially the completion of the Human Genome Project, it is now time for a new phase in research on the molecular mechanisms of brain functions, according to Kennedy. In addition to basic improvements in knowledge of how brain signaling works, the research program could also lead indirectly to pharmaceutical advances.

"Neurological and mental diseases result, in part, from derangements in regulation of synaptic transmission," Kennedy says. "In a type of neuronal structure known as dendritic spines -- so named because they sort of look like spines -- calcium influx through a certain type of receptor is a principal regulator of synaptic strength, or plasticity. Thus, calcium can lead to increases or decreases, of varying durations, in synaptic strength."

The program includes four projects and a core that will provide new computer software. One project will use a computer program called MCell to develop and test models of calcium dynamics in spines. Another will rely on microscopy to study the organization of calcium sources and sinks in spines, as well as calcium distribution. A third, which will be centered in Kennedy's lab, will develop and test kinetic models of enzymes regulated by calcium; and a fourth will use advanced imaging techniques to measure calcium signals and their regulation in individual spines.

The program will be highly interdisciplinary, Kennedy says. Three physicists will be among the team members in her lab. Work at the other institutions, as well, will involve specialists from disciplines outside biology.

"Once we have a better quantitative understanding of signaling, it will be possible to ask much 'cleaner' questions about what kind of drugs will treat certain conditions, and under what circumstances."


Contact: Robert Tindol (626) 395-3631


New Insight Into How Flies Fly

PASADENA, Calif. –How does a fly fly and why should we care? To the first, says Michael Dickinson, a professor of bioengineering at the California Institute of Technology, the short answer is different from what we have thought, and he and his colleagues used a dynamically-scaled flapping robot (aka Robofly), a free flight arena (aka Fly-O-Rama), and a 3D, infrared visual flight simulator (Fly-O-Vision) to prove it.

And we should care, says Dickinson, because the simple motion of a flying fly links a series of fundamental and complex processes within both the physical and biological sciences. Studying a fly may eventually lead to a model that will provide insight into the behavior and robustness of complex systems in general, and, for roboticists, may help them in the design of flying robots that mimic nature.

In a paper entitled "The Aerodynamics of Free Flight Maneuvers in Drosophila," Steven Fry of the University of Zurich, Rosalyn Sayaman, a Caltech research assistant, and Dickinson show how tiny insects use their wings to generate enough torque to overcome inertia, and not--as conventional wisdom has held--friction. The paper will appear in the April 18 issue of the journal Science.

Flies and other dipterans (insects within the family that includes houseflies, hoverflies, and fruit flies), are capable of making rapid 90-degree turns, called saccades, at "extraordinary" speeds, says Dickinson, less than 50-thousandths of a second. That's faster, he says, "than a human eye can blink." To make the turn, a fly must generate enough torque, or twisting force, to offset two forces working against it--the inertia of its own body and the viscous friction of air.

Until now, it's always been assumed that viscosity, a resistance to flow, is the enemy for small critters, while inertia is the bane of larger animals like birds. But the theory has never been tested.

To study the aerodynamics of active flight maneuvers, the researchers employed infrared, three-dimensional, high-speed video (the Fly-O-Vision) to capture the fruit fly, Drosophila melanogaster, performing saccades in free flight. The animals were released in a large, enclosed arena (the Fly-O-Rama), and lured toward a vertical cylinder laced with a drop of vinegar. As the flies approach the cylinder, it looms within their field of view, triggering a rapid turn that helps the fly avoid a collision.

Many flies performed saccades within the intersecting fields of view of the three cameras, which allowed the researchers to film the turn, measure the wing and body position throughout the maneuver, and calculate the velocity of its path.

The improved resolution of the 3D video showed that, despite its small size and slow speed (relative to other animals), the fly performed a banked turn, similar to those observed in larger fly species, first accelerating, then slowing as it changed heading, then accelerating again at the end of the turn. This suggests that the time and velocity of the small fly are dominated by body inertia and not friction.

To see if the measured patterns of wing motion were sufficient to explain the saccades, the researchers played the sequences through a dynamically scaled robotic model (you guessed it, Robofly) to measure the aerodynamic forces as they vary by time. They found that the time and torque they calculated based on the fly's body morphology and body motion from the video matched "amazingly well," says Dickinson, with the calculations derived from the wing motion of the robot. These results, he notes, further support the notion that even in small insects the torques created by the wings act primarily to overcome inertia and not friction.

Although these experiments were performed on tiny fruit flies, says Dickinson, the results impact nearly all insects, because the importance of inertia over friction increases with the size of the animal. The results also provide a basis for future research on the neural and mechanical basis of insect flight, and, for roboticists, may offer insights for the design of biomimetic flying devices. It may also yield a little respect for the common fly. As Rosalyn Sayaman puts it on her web page, "I now love flies. I used to just shoo and swat. Now, I can't even swat anymore."

Note to Editors: Video and still photos are available.

Contact: Mark Wheeler (626) 395-8733

Visit the Caltech Media Relations Website at



Astronomers find new evidence aboutuniverse's heaviest phase of star formation

New distance measurements from faraway galaxies further strengthen the view that the strongest burst of star formation in the universe occurred about two billion years after the Big Bang.

Reporting in the April 17 issue of the journal Nature, California Institute of Technology astronomers Scott Chapman and Andrew Blain, along with their United Kingdom colleagues Ian Smail and Rob Ivison, provide the redshifts of 10 extremely distant galaxies which strongly suggest that the most luminous galaxies ever detected were produced over a rather short period of time. Astronomers have long known that certain galaxies can be seen about a billion years after the Big Bang, but a relatively recent discovery of a type of extremely luminous galaxy -- one that is very faint in visible light, but much brighter at longer wavelengths -- is the key to the new results.

This type of galaxy was first found in 1997 using a new and much more sensitive camera for observing at submillimeter wavelengths (longer than the wavelengths of visible light that allows us to see, but somewhat shorter than radio waves). The camera was attached to the James Clerk Maxwell Telescope (JCMT), on Mauna Kea in Hawaii.

Submillimeter radiation is produced by warm galactic "dust" -- micron-sized solid particles similar to diesel soot that are interspersed between the stars in galaxies. Based on their unusual spectra, experts have thought it possible that these "submillimeter galaxies" could be found even closer in time to the Big Bang.

Because the JCMT cannot see details of the sky that are as fine as details seen by telescopes operating at visible and radio wavelengths, and because the submillimeter galaxies are very faint, researchers have had a hard time determining the precise locations of the submillimeter galaxies and measuring their distances. Without an accurate distance, it is difficult to tell how much energy such galaxies produce; and with no idea of how powerful they are, it is uncertain how important such galaxies are in the universe.

The new results combine the work of several instruments, including the Very Large Array in New Mexico (the world's most sensitive radio telescope), and one of the 10-meter telescopes at the W. M. Keck Observatory on Mauna Kea, which are the world's largest optical telescopes. These instruments first pinpointed the position of the submillimeter galaxies, and then measured their distances. Today's article in Nature reports the first 10 distances obtained.

The Keck telescope found the faint spectral signature of radiation that is emitted, at a single ultraviolet wavelength of 0.1215 micrometers, by hydrogen gas excited by either a large number of hot, young stars or by the energy released as matter spirals into a black hole at the core of a galaxy. The radiation is detected at a longer, redder wavelength, having been Doppler shifted by the rapid expansion of the universe while the light has been traveling to Earth.

All 10 of the submillimeter galaxies that were detected emitted the light that we see today when the universe was less than half its present age. The most distant produced its light only two billion years after the Big Bang (12 billion years ago). Thus, the submillimeter galaxies are now confirmed to be the most luminous type of galaxies in the universe, several hundred times more luminous than our Milky Way, and 10 trillion times more luminous than the sun.

It is likely that the formation of such extreme objects had to wait for a certain size of a galaxy to grow from an initially almost uniform universe and to become enriched with carbon, silicon, and oxygen from the first stars. The time when the submillimeter galaxies shone brightly can also provide information about how the sizes and makeup of galaxies developed at earlier times.

By detecting these galaxies, the Caltech astronomers have provided an accurate census of the most extreme galaxies in the universe at the peak of their activity and witnessed the most dramatic period of star buildup yet seen in the Milky Way and nearby galaxies. Now that their distances are known accurately, other measurements can be made to investigate the details of their power source, and to find out what galaxies will result when their intense bursts of activity come to an end.

James Clerk Maxwell Telescope is at The Very Large Array is at Keck Observatory is at http:/

Contact: Robert Tindol (626) 395-3631


Discovery of giant planar Hall effect could herald a generation of "spintronics" devices

A basic discovery in magnetic semiconductors could result in a new generation of devices for sensors and memory applications -- and perhaps, ultimately, quantum computation -- physicists from the California Institute of Technology and the University of California at Santa Barbara have announced.

The new phenomenon, called the giant planar Hall effect, has to do with what happens when the spins of current-carrying electrons are manipulated. For several years scientists have been engaged in exploiting electron spin for the creation of a new generation of electronic devices --hence the term "spintronics" -- and the Caltech-UCSB breakthrough offers a new route to realizing such devices.

The term "spintronics" is used instead of "electronics" because the technology is based on a new paradigm, says Caltech physics professor Michael Roukes. Rather than merely using an electric current to make them work, spintronic devices will also rely on the magnetic orientation (or spin) of the electrons themselves. "In regular semiconductors, the spin freedom of the electrical current carriers does not play a role," says Roukes. "But in the magnetic semiconductors we've studied, the spin polarization -- that is, the magnetism -- of electrical current carriers is highly ordered. Consequently, it can act as an important factor in determining the current flow in the electrical devices."

In the naturally unpolarized state, there is no particular order between one electron's spin and its neighbor's. If the spins are aligned, the result can be a change in resistance to current flow.

Such changes in resistance have long been known for metals, but the current research is the first time that semiconductor material has been constructed in such a way that spin-charge interaction is manifested as a very dramatic change in resistivity. The Caltech-UCSB team managed to accomplish this by carefully preparing a ferromagnetic semiconductor material made of gallium manganese arsenide (GaMnAs). The widely-used current technology employs sandwiched magnetic metal structures used for magnetic storage.

"You have much more freedom with semiconductors than metals for two reasons," Roukes explains. "First, semiconductor material can be made compatible with the mainstream of semiconductor electronics; and second, there are certain phenomena in semiconductors that have no analogies in metals."

Practical applications of spintronics will likely include new paradigms in information storage, due to the superiority of such semiconductor materials to the currently available dynamic random access memory (or DRAM) chips. This is because the semiconductor spintronics would be "nonvolatile," meaning that once the spins were aligned, the system would be as robust as a metal bar that has been permanently magnetized.

The spintronics semiconductors could also conceivably be used in magnetic logic to replace transistors as switches in certain applications. In other words, spin alignment would be used as a logic gate for faster circuits with lower energy usage.

Finally, the technology could possibly be improved so that the quantum states of the spins themselves might be used for logic gates in future quantum computers. Several research teams have quantum logic gates, but the setup is the size of an entire laboratory, rather than at chip scale, and therefore still unsuitable for device integration. By contrast, a spintronics-based device might be constructed as a solid-state system that could be integrated into microchips.

A full description of the Caltech-UCSB team's work appeared in the March 14 issue of Physical Review Letters [Tang et al, Vol 90, 107201 (2003)]. The article is available by subscription, but the main site can be accessed at This discovery is also featured in the "News and Views" section of the forthcoming issue of Nature Materials.

Contact: Robert Tindol (626) 395-3631


Science begins for LIGO in questto detect gravitational waves

Armed with one of the most advanced scientific instruments of all time, physicists are now watching the universe intently for the first evidence of gravitational waves. First predicted by Albert Einstein in 1916 as a consequence of the general theory of relativity, gravitational waves have never been detected directly.

In Einstein's theory, alterations in the shape of concentrations of mass (or energy) have the effect of warping space-time, thereby causing distortions that propagate through the universe at the speed of light. A new generation of detectors, led by the Laser Interferometer Gravitational-Wave Observatory (LIGO), is coming into operation and promises sensitivities that will be capable of detecting a variety of catastrophic events, such as the gravitational collapse of stars or the coalescence of compact binary systems.

The commissioning of LIGO and improvements in the sensitivity are coming very rapidly, as the final interferometer systems are implemented and the limiting noise sources are uncovered and mitigated. In fact, the commissioning has made such rapid progress that LIGO is already capable of performing some of the most sensitive searches ever undertaken for gravitational waves. A similar device in Hannover, Germany (a German–U.K. collaboration known as GEO) is also getting underway, and these instruments are being used together as the initial steps in building a worldwide network of gravitational-wave detectors.

The first data was taken during a 17-day data run in September 2002. That data has now been analyzed for the presence of gravitational waves, and results are being presented at the American Physical Society meeting in Philadelphia. No sources have yet been detected, but new limits on gravitational radiation from such sources as binary neutron star inspirals, selected pulsars in our galaxy and background radiation from the early universe, are reported.

Realistically, detections are not expected at the present sensitivities. A second data run is now underway with significantly better sensitivity, and further improvements are expected over the next couple of years.

As the initial LIGO interferometers start to put new limits on gravitational-wave signals, the LIGO Lab, the LIGO Scientific Collaboration, and international partners are proposing an advanced LIGO to improve the sensitivity by more than a factor of 10 beyond the goals of the present instrument. It is anticipated that this new instrument may see gravitational-wave sources as often as daily, with excellent signal strengths, allowing details of the waveforms to be read off and compared with theories of neutron stars, black holes, and other highly relativistic objects. The improvement of sensitivity will allow the one-year planned observation time of the initial LIGO to be equaled in a matter of hours. The National Science Foundation has supported LIGO, and collaboration between Caltech and MIT were responsible for its construction. A scientific community of more than 400 scientists from around the world are now involved in research at LIGO.


Caltech applied physicists invent waveguideto bypass diffraction limits for new optical devices

Four hundred years ago, a scientist could peer into one of the newfangled optical microscopes and see microorganisms, but nothing much smaller. Nowadays, a scientist can look in the latest generation of lens-based optical microscopes and also see, well, microorganisms, but nothing much smaller. The limiting factor has always been a fundamental property of the wave nature of light that fuzzes out images of objects much smaller than the wavelength of the light that illuminates those objects. This has hampered the ability to make and use optical devices smaller than the wavelength. But a new technological breakthrough at the California Institute of Technology could sidestep this longstanding barrier.

Caltech applied physicist Harry Atwater and his associates have announced their success in creating "the world's smallest waveguide, called a plasmon waveguide, for the transport of energy in nanoscale systems." In essence, they have created a sort of "light pipe" constructed of a chain-array of several dozen microscopic metal slivers that allows light to hop along the chain and circumvent the diffraction limit. With such technology, there is the clear possibility that optical components can be constructed for a huge number of technological applications in which the diffraction limit is troublesome.

"What this represents is a fundamentally new approach for optical devices in which diffraction is not a limit," says Atwater.

Because the era of nanoscale devices is rapidly approaching, Atwater says, the future bodes well for extremely tiny optical devices that, in theory, would be able to connect to molecules and someday even to individual atoms.

At present, the Atwater team's plasmon waveguide looks something like a standard glass microscope slide. Fabricated on the glass plate by means of electron beam lithography is a series of nanoparticles, each about 30 nanometers (30 billionths of a meter, in other words) in width, about 30 nanometers in height, and about 90 nanometers in length. These etched "rods" are arranged in a parallel series like railroad ties, with such a tiny space between them that light energy can move along with very little radiated loss.

Therefore, if light with a wavelength of 590 nanometers, for example, passes through the nanoparticles, the light is confined to the smaller dimensions of the nanoparticles themselves. The light energy then "hops" between the individual elements in a process known as dipole-dipole coupling, at a rate of propagation considerably slower than the speed of light in a vacuum.

In addition to their functionality as miniature optical waveguides, these structures are also sensitive to the presence of biomolecules. Thus, a virus or even a single molecule of nerve gas could conceivably be detected with an optical device designed for biowarfare sensing. The potential applications include electronic devices that could detect single molecules of a pathogen, for example.

The ultrasmall waveguide could also be used to optically interconnect to electronic devices, because individual transistors on a microchip are already too small to be seen in a conventional optical microscope.

A description of the device will appear in the April 2003 issue of the journal Nature Materials. The other Caltech authors of the paper were Stefan A. Maier, a former graduate student and now postdoctoral researcher at Caltech, who was responsible for the working device, and Pieter G. Kik, also a postdoctoral researcher. Other authors were Sheffer Meltzer, Elad Harel, Bruce E. Koel, and Ari A.G. Requicha, all from the University of Southern California.

The nanoparticle structures were fabricated at the Jet Propulsion Laboratory's facility for electron beam lithography, with the help of JPL employees Richard Muller, Paul Maker, and Pierre Echternach.

The research was sponsored by the Air Force Office of Scientific Research and was also supported in part by grants from the National Science Foundation and Caltech's Center for Science and Engineering of Materials.

Contact: Robert Tindol (626) 395-3631


Quick action by astronomers worldwide leadsto new insights on mysterious gamma-ray bursts

Scientists "arriving quickly on the scene" of an October 4 gamma-ray burst have announced that their rapid accumulation of data has provided new insights about this exotic astrophysical phenomenon. The researchers have seen, for the first time, ongoing energizing of the burst afterglow for more than half an hour after the initial explosion.

The findings support the "collapsar" model, in which the core of a star 15 times more massive than the sun collapses into a black hole. The black hole's spin, or magnetic fields, may be acting like a slingshot, flinging material into the surrounding debris.

The prompt observation—and by far the most detailed to date—was made possible by several ground- and space-based observatories operating in tandem. The blast was initially detected by NASA's High-Energy Transient Explorer (HETE) satellite, and follow-up observations were quickly undertaken using ground-based robotic telescopes and fast-thinking researchers around the globe. The results are reported in the March 20 issue of the journal Nature.

"If a gamma-ray burst is the birth cry of a black hole, then the HETE satellite has just allowed us into the delivery room," said Derek Fox, a postdoctoral researcher at the California Institute of Technology and lead author of the Nature paper. Fox discovered the afterglow, or glowing embers of the burst, using the Oschin 48-inch telescope located at Caltech's Palomar Observatory.

Gamma-ray bursts shine hundreds of times brighter than a supernova, or as bright as a million trillion suns. The mysterious bursts are common, yet random and fleeting. The gamma-ray portion of a burst typically lasts from a few milliseconds to a couple of minutes. An afterglow, caused by shock waves from the explosion sweeping up matter and ramming it into the region around the burst, can linger for much longer, releasing energy in X rays, visible light, and radio waves. It is from the studies of such afterglows that astronomers can hope to learn more about the origins and nature of these extreme cosmic explosions.

This gamma-ray burst, called GRB021004, appeared on October 4, 2002, at 8:06 a.m. EDT. Seconds after HETE detected the burst, an e-mail providing accurate coordinates was sent to observatories around the world, including Caltech's Palomar Observatory. Fox pinpointed the afterglow shortly afterward from images captured by the Oschin Telescope within minutes of the burst, and notified the astronomical community through a rapid e-mail system operated by NASA for the follow-up studies of gamma-ray bursts. Then the race was on, as scientists in California, across the Pacific, Australia, Asia, and Europe employed more than 50 telescopes to zoom in on the afterglow before the approaching sunrise.

At about the same time, the afterglow was detected by the Automated Response Telescope (ART) in Japan, a 20-centimeter instrument located in Wako, a Tokyo suburb, and operated by the Japanese research institute RIKEN. The ART started observing the region a mere 193 seconds after the burst, but it took a few days for these essential observations to be properly analyzed and distributed to the astronomical community.

Analysis of these rapid observations produced a surprise: fluctuations in brightness, which scientists interpreted as the evidence for a continued injection of energy into the afterglow, well after the burst occurred. According to Shri Kulkarni, who is the McArthur Professor of Astronomy and Planetary Science at Caltech, the newly observed energizing of the burst afterglow indicates that the power must have been provided by whatever object produced the gamma-ray burst itself.

"This ongoing energy shows that the explosion is not a simple, one-time event, but that the central source lives for a longer time," said Kulkarni, a co-author of the Nature paper. "This is bringing us closer to a full understanding of these remarkable cosmic flashes."

Added Fox, "In the past we used to be impressed by the energy release in gamma-rays alone. These explosions appear to be more energetic than meets the eye."

Later radio observations undertaken at the Very Large Array in New Mexico and other radio telescopes, including Caltech's Owens Valley Radio Observatory and the IRAM millimeter telescope in France, lend further support to the idea that the explosions continued increasing in energy. "Whatever monster created this burst just refused to die quietly," said D. A. Frail, co-author and a staff astronomer at the Very Large Array.

Fox and his colleagues relied on data from the RIKEN telescope, in Japan, and from the Palomar Oschin Telescope and its Near Earth Asteroid Tracking (NEAT) camera, an instrument that has been roboticized and is currently managed by a team of astronomers at JPL led by Steven Pravdo. The collaboration of the Caltech astronomers and the NEAT team has proven extremely fruitful for the global astronomical community, helping to identify fully 25 percent of the afterglows discovered worldwide since Fox retrofitted the telescope software for this new task in the autumn of 2001.

HETE is the first satellite to provide and distribute accurate burst locations within seconds. The principal investigator for the HETE satellite is George Ricker of the Massachussetts Institute of Technology. HETE was built as a "mission of opportunity" under the NASA Explorer Program, a collaboration among U.S. universities, Los Alamos National Laboratory, and scientists and organizations in Brazil, France, India, Italy, and Japan.


Contact: Robert Tindol (626) 395-3631


Caltech computer scientists develop FAST protocol to speed up Internet

Caltech computer scientists have developed a new data transfer protocol for the Internet fast enough to download a full-length DVD movie in less than five seconds.

The protocol is called FAST, standing for Fast Active queue management Scalable Transmission Control Protocol (TCP). The researchers have achieved a speed of 8,609 megabits per second (Mbps) by using 10 simultaneous flows of data over routed paths, the largest aggregate throughput ever accomplished in such a configuration. More importantly, the FAST protocol sustained this speed using standard packet size, stably over an extended period on shared networks in the presence of background traffic, making it adaptable for deployment on the world's high-speed production networks.

The experiment was performed last November during the Supercomputing Conference in Baltimore, by a team from Caltech and the Stanford Linear Accelerator Center (SLAC), working in partnership with the European Organization for Nuclear Research (CERN), and the organizations DataTAG, StarLight, TeraGrid, Cisco, and Level(3).

The FAST protocol was developed in Caltech's Networking Lab, led by Steven Low, associate professor of computer science and electrical engineering. It is based on theoretical work done in collaboration with John Doyle, a professor of control and dynamical systems, electrical engineering, and bioengineering at Caltech, and Fernando Paganini, associate professor of electrical engineering at UCLA. It builds on work from a growing community of theoreticians interested in building a theoretical foundation of the Internet, an effort in which Caltech has been playing a leading role.

Harvey Newman, a professor of physics at Caltech, said the fast protocol "represents a milestone for science, for grid systems, and for the Internet."

"Rapid and reliable data transport, at speeds of one to 10 Gbps and 100 Gbps in the future, is a key enabler of the global collaborations in physics and other fields," Newman said. "The ability to extract, transport, analyze and share many Terabyte-scale data collections is at the heart of the process of search and discovery for new scientific knowledge. The FAST results show that the high degree of transparency and performance of networks, assumed implicitly by Grid systems, can be achieved in practice. In a broader context, the fact that 10 Gbps wavelengths can be used efficiently to transport data at maximum speed end to end will transform the future concepts of the Internet."

Les Cottrell of SLAC, added that progress in speeding up data transfers over long distance are critical to progress in various scientific endeavors. "These include sciences such as high-energy physics and nuclear physics, astronomy, global weather predictions, biology, seismology, and fusion; and industries such as aerospace, medicine, and media distribution.

"Today, these activities often are forced to share their data using literally truck or plane loads of data," Cottrell said. "Utilizing the network can dramatically reduce the delays and automate today's labor intensive procedures."

The ability to demonstrate efficient high performance throughput using commercial off the shelf hardware and applications, standard Internet packet sizes supported throughput today's networks, and requiring modifications to the ubiquitous TCP protocol only at the data sender, is an important achievement.

With Internet speeds doubling roughly annually, we can expect the performances demonstrated by this collaboration to become commonly available in the next few years, so the demonstration is important to set expectations, for planning, and to indicate how to utilize such speeds.

The testbed used in the Caltech/SLAC experiment was the culmination of a multi-year effort, led by Caltech physicist Harvey Newman's group on behalf of the international high energy and nuclear physics (HENP) community, together with CERN, SLAC, Caltech Center for Advanced Computing Research (CACR), and other organizations. It illustrates the difficulty, ingenuity and importance of organizing and implementing leading edge global experiments. HENP is one of the principal drivers and co-developers of global research networks. One unique aspect of the HENP testbed is the close coupling between R&D and production, where the protocols and methods implemented in each R&D cycle are targeted, after a relatively short time delay, for widespread deployment across production networks to meet the demanding needs of data intensive science.

The congestion control algorithm of the current Internet was designed in 1988 when the Internet could barely carry a single uncompressed voice call. The problem today is that this algorithm cannot scale to anticipated future needs, when the networks will be compelled to carry millions of uncompressed voice calls on a single path or support major science experiments that require the on-demand rapid transport of gigabyte to terabyte data sets drawn from multi-petabyte data stores. This protocol problem has prompted several interim remedies, such as using nonstandard packet sizes or aggressive algorithms that can monopolize network resources to the detriment of other users. Despite years of effort, these measures have proved to be ineffective or difficult to deploy.

They are, however, critical steps in our evolution toward ultrascale networks. Sustaining high performance on a global network is extremely challenging and requires concerted advances in both hardware and protocols. Experiments that achieve high throughput either in isolated environments or using interim remedies that by-pass protocol instability, idealized or fragile as they may be, push the state of the art in hardware and demonstrates its performance limit. Development of robust and practical protocols will then allow us to make effective use of the most advanced hardware to achieve ideal performance in realistic environments.

The FAST team addresses the protocol issues head-on to develop a variant of TCP that can scale to a multi-gigabit-per-second regime in practical network conditions. The integrated approach that combines theory, implementation, and experiment is what makes their research unique and fundamental progress possible.

Using standard packet size that is supported throughout today's networks, the current TCP typically achieves an average throughput of 266 Mbps, averaged over an hour, with a single TCP/IP flow between Sunnyvale near SLAC and CERN in Geneva, over a distance of 10,037 kilometers. This represents an efficiency of just 27 percent. The FAST TCP sustained an average throughput of 925 Mbps and an efficiency of 95 percent, a 3.5-times improvement, under the same experimental condition. With 10 concurrent TCP/IP flows, FAST achieved an unprecedented speed of 8,609 Mbps, at 88 percent efficiency, that is 153,000 times that of today's modem and close to 6,000 times that of the common standard for ADSL (Asymmetric Digital Subscriber Line) connections.

The 10-flow experiment sets another first in addition to the highest aggregate speed over routed paths. It is the combination of high capacity and large distance that causes performance problems. Different TCP algorithms can be compared using the product of achieved throughput and the distance of transfer, measured in bit-meter-per-second, or bmps. The world record for the current TCP is 10 peta (1 followed by 16 zeros) bmps, using a nonstandard packet size. The Caltech/SLAC experiment transferred 21 terabytes over six hours between Baltimore and Sunnyvale using standard packet size, achieving 34 peta bmps. Moreover, data was transferred over shared research networks in the presence of background traffic, suggesting that FAST can be backward compatible with the current protocol. The FAST team has started to work with various groups around the world to explore testing and deploying FAST TCP in communities that need multi-Gbps networking urgently.

The demonstrations used a 10 Gbps link donated by Level(3) between StarLight (Chicago) and Sunnyvale, as well as the DataTAG 2.5 Gbps link between StarLight and CERN, the Abilene backbone of Internet2, and the TeraGrid facility. The network routers and switches at StarLight and CERN were used together with a GSR 12406 router loaned by Cisco at Sunnyvale, additional Cisco modules loaned at StarLight, and sets of dual Pentium 4 servers each with dual Gigabit Ethernet connections at StarLight, Sunnyvale, CERN, and the SC2002 show floor provided by Caltech, SLAC, and CERN. The project is funded by the National Science Foundation, the Department of Energy, the European Commission, and the Caltech Lee Center for Advanced Networking.

One of the drivers of these developments has been the HENP community, whose explorations at the high-energy frontier are breaking new ground in our understanding of the fundamental interactions, structures and symmetries that govern the nature of matter and space-time in our universe. The largest HENP projects each encompasses 2,000 physicists from 150 universities and laboratories in more than 30 countries.

Rapid and reliable data transport, at speeds of 1 to 10 Gbps and 100 Gbps in the future, is a key enabler of the global collaborations in physics and other fields. The ability to analyze and share many terabyte-scale data collections, accessed and transported in minutes, on the fly, rather than over hours or days as is the current practice, is at the heart of the process of search and discovery for new scientific knowledge. Caltech's FAST protocol shows that the high degree of transparency and performance of networks, assumed implicitly by Grid systems, can be achieved in practice.

This will drive scientific discovery and utilize the world's growing bandwidth capacity much more efficiently than has been possible until now.



Subscribe to RSS - research_news