Mars Has Been in the Deep Freeze for the Past Four Billion Years, Study Shows

PASADENA, Calif.--The current mean temperature on the equator of Mars is a blustery 69 degrees below zero Fahrenheit. Scientists have long thought that the Red Planet was once temperate enough for water to have existed on the surface, and for life to possibly have evolved. But a new study by Caltech and MIT scientists gives this idea the cold shoulder.

In the July 22 issue of the journal Science, Caltech graduate student David Shuster and MIT assistant professor Benjamin Weiss (formerly a Caltech student) report that their studies of Martian meteorites demonstrate that at least several rocks originally located near the surface of Mars have been freezing cold for four billion years. Their work is a novel approach to extracting information on the past climate of Mars through the study of Martian meteorites.

In fact, the evidence shows that during the last four billion years, Mars has likely never been sufficiently warm for liquid water to have flowed on the surface for extended periods of time. This implies that Mars has probably never had a hospitable environment for life to have evolved, unless life could have gotten started during the first half-billion years of its existence, when the planet was probably warmer.

The work involves two of the seven known "nakhlite" meteorites (named after El Nakhla, Egypt, where the first such meteorite was discovered), and the celebrated ALH84001 meteorite that some scientists believe shows evidence of microbial activity on Mars. Using geochemical techniques, Shuster and Weiss reconstructed a "thermal history" for each of the meteorites to estimate the maximum long-term average temperatures to which they were subjected.

"We looked at meteorites in two ways," says Weiss. "First, we evaluated what the meteorites could have experienced during ejection from Mars, 11 to 15 million years ago, in order to set an upper limit on the temperatures in a worst-case scenario for shock-heating."

Their conclusions were that ALH84001 could never have been heated to a temperature higher than 650 degrees Fahrenheit for even a brief period of time during the last 15 million years. The nakhlites, which show very little evidence of shock-damage, were unlikely to have been above the boiling point of water during ejection 11 million years ago.

Although these are still rather high temperatures, the other part of the research addressed the long-term thermal history of the rocks while they resided on Mars. They did this by estimating the total amount of argon still remaining in the samples, using data previously published by two teams at the University of Arizona and the NASA Johnson Space Center.

The gas argon is present in the meteorites as well as in many rocks on Earth as a natural consequence of the radioactive decay of potassium. As a noble gas, argon is not very chemically reactive, and because the decay rate is precisely known, geologists for years have measured argon as a means of dating rocks.

However, argon is also known to "leak" out of rocks at a temperature-dependent rate. This means that if the argon remaining in the rocks is measured, an inference can be made about the maximum heat to which the rock has been subjected since the argon was first made. The cooler the rock has been, the more argon will have been retained. Shuster and Weiss's analysis found that only a tiny fraction of the argon that was originally produced in the meteorite samples has been lost through the eons. "The small amount of argon loss that has apparently taken place in these meteorites is remarkable. Any way we look at it, these rocks have been cold for a very long time," says Shuster. Their calculations suggest that the Martian surface has been in deep-freeze for most of the last four billion years.

"The temperature histories of these two planets are truly different. On Earth, you couldn't find a single rock that has been below even room temperature for that long," says Shuster. The ALH84001 meteorite, in fact, couldn't have been above freezing for more than a million years during the last 3.5 billion years of history.

"Our research doesn't mean that there weren't pockets of isolated water in geothermal springs for long periods of time, but suggests instead that there haven't been large areas of free-standing water for four billion years.

"Our results seem to imply that surface features indicating the presence and flow of liquid water formed over relatively short time periods," says Shuster.

On a positive note for astrobiology, however, Weiss says that the new study does nothing to disprove the theory of "panspermia," which holds that life can jump from one planet to another by meteorites. Weiss and his supervising professor at Caltech, Joe Kirschvink (the Van Wingen Professor of Geobiology), several years ago showed that microbes could indeed have traveled from Mars to Earth in the hairline fractures of ALH84001 without having been destroyed by heat. In particular, the fact that the nakhlites have never been heated above about 200 degrees Fahrenheit means that they were not heat-sterilized during ejection from Mars and transfer to Earth.

The title of the new paper is "Martian Surface Paleotemperatures from Thermochronology of Meteorites."

 

Writer: 
Robert Tindol
Writer: 

Deep Impact: During and After Impact

PALOMAR MOUNTAIN, Calif. - Astronomers using the Palomar Observatory's 200-inch Hale Telescope have been amazed by comet Tempel 1's behavior during and after its collision with the Deep Impact space probe.

In the minutes just after the impact the comet was seen to increase its near-infrared brightness nearly fivefold. As the event progressed astronomers at Palomar were able to distinguish jets of material venting from the comet's nucleus that have persisted for days.

Early results from the data, in images taken just minutes after impact, showed a possible plume of dust and gas extending outward some 320 km (200 miles) from the comet's center, roughly coinciding with the site of the probe's final demise.

This apparent dust plume has persisted for several nights, allowing astronomers to watch the comet's slow rotation. The night after impact the plume was on the far side of the comet, but was visible again the next evening as the comet's rotation brought it back into view. Two days after impact, the plume was seen again, this time extending about 200 km (124 miles) from the comet's center. According to Bidushi Bhattacharya of the California Institute of Technology's (Caltech) Spitzer Science Center, "This could be indicative of an outburst of gas and dust still taking place near the region of the impact."

"We are very excited by these results. It is a fabulous time to be studying comets," says James Bauer of the Jet Propulsion Laboratory (JPL). "It will be interesting to see how long the effects of the impact persist," he adds.

The images of the comet, obtained by Bauer and Bhattacharya, were sharper than those from most ground-based telescopes because they used a technique known as adaptive optics. Adaptive optics allows astronomers to correct for the blurring of images caused by Earth's turbulent atmosphere, giving them a view that often surpasses those of smaller telescopes based in space.

Using the adaptive-optics technique to improve an astronomer's view is generally only possible when a bright star is located near the object they want to study. On the night of impact there was no bright star close enough to the comet to use. Mitchell Troy, the adaptive-optics group lead and Palomar adaptive-optics task manager at JPL, worked with his team to make adaptive optics corrections anyway. "Through the dedicated efforts of the JPL and Caltech teams we were able to deploy a new sensor that was 25 times more sensitive then our normal sensor. This new sensor allowed us to correct for some of the atmosphere's distortions and significantly improve the view of the comet," says Troy. This improved view allowed astronomers to see the dust and ejected material moving out from the comet's surface immediately following the impact event and again days later.

Earth-based observations from telescopes like the 200-inch at Palomar give astronomers an important perspective on how the comet is reacting to the impact, a perspective that cannot be achieved from the front-row seat of a fly-by spacecraft. Astronomers on the ground have the luxury of long-term observations that may continue to show changes in the comet for weeks to come.

Collaborators on the observations include Paul Weissman (JPL), and the Palomar 200-inch crew. The Caltech-adaptive optics team is made up of Richard Dekany (team leader), Antonin Bouchez, Matthew Britton, Khanh Bui, Alan Morrissett, Hal Petrie, Viswa Velur and Bob Weber. The JPL Palomar adaptive-optics team includes Mitchell Troy (team leader), John Angione, Sidd Bikkannavar, Gary Brack, Steve Guiwits, Dean Palmer, Ben Platt , Jennifer Roberts, Chris Shelton, Fang Shi, Thang Trinh, Tuan Truong and Kent Wallace.

The Palomar adaptive-optics instrument was built and continues to be supported by the Jet Propulsion Laboratory as part of a Caltech-JPL collaboration.

Support for the adaptive-optics research at Caltech's Palomar Observatory comes from the Oschin Family Foundation, the Gordon and Betty Moore Foundation and the National Science Foundation Center for Adaptive Optics.

MEDIA CONTACT: Scott Kardel, Palomar Public Affairs Director (760) 742-2111 wsk@astro.caltech.edu

Visit the Caltech media relations web site: http://pr.caltech.edu/media Images are available at: http://www.astro.caltech.edu/palomarnew/deepimpact.html

 

Writer: 
SK

First Planet Under Three Suns Is Discovered

PASADENA, Calif.—An extrasolar planet under three suns has been discovered in the constellation Cygnus by a planetary scientist at the California Institute of Technology using the 10-meter Keck I telescope in Hawaii. The planet is slightly larger than Jupiter and, given that it has to contend with the gravitational pull of three bodies, promises to seriously challenge our current understanding of how planets are formed.

In the July 14 issue of Nature, Maciej Konacki, a senior postdoctoral scholar in planetary science at Caltech, reports on the discovery of the Jupiter-class planet orbiting the main star of the close-triple-star system known as HD 188753. The three stars are about 149 light-years from Earth and are about as close to one another as the distance between the sun and Saturn.

In other words, a viewer there would see three bright suns in the sky. In fact, the sun that the planet orbits would be a very large object in the sky indeed, given that the planet's "year" is only three and a half days long. And it would be yellow, because the main star of HD 188753 is very similar to our own sun. The larger of the other two suns would be orange, and the smaller red.

Konacki refers to the new type of planet as "Tatooine planets," because of the similarity to Luke Skywalker's view of his home planet's sky in the first Star Wars movie.

"The environment in which this planet exists is quite spectacular," says Konacki. "With three suns, the sky view must be out of this world-literally and figuratively."

However, Konacki adds that the fact that a planet can even exist in a multiple-star system is amazing in itself. Binary and multiple stars are quite common in the solar neigborhood, and in fact outnumber single stars by some 20 percent.

Researchers have found most of the extrasolar planets discovered so far by using a precision velocity technique that is easier to employ on studies of single stars. Experts generally avoided close-binary and close-multiple stars because the existing planet detection techniques fail for such complicated systems, and also because theories of solar-system formation suggested that planets were very unlikely to form in such environments.

Konacki's breakthrough was made possible by his development of a novel method that allows him to precisely measure velocities of all members of close-binary and close-multiple-star systems. He used the technique for a search for extrasolar planets in such systems with the Keck I telescope. The planet in the HD 188753 system is the first one from this survey.

"If we believe that the same basic processes lead to the formation of planets around single stars and components of multiple stellar systems, then such processes should be equally feasible, regardless of the presence of stellar companions," Konacki says. "Planets from complicated stellar systems will put our theories of planet formation to a strict test."

Scientists in 1995 discovered the first "hot Jupiter"-in other words, an extrasolar gas-giant planet with an orbital period of three to nine days. Today, more than 20 such planets are known to orbit other stars. These planets are believed to form in a disk of gas and condensed matter at or beyond three astronomical units (three times the 93-million-mile distance between the sun and Earth).

A sufficient amount of solid material exists at three astronomical units to produce a core capable of capturing enough gas to form a giant planet. After formation, these planets are believed to migrate inward to their present very close orbits.

If the parent star is orbited by a close stellar companion, then its gravitational pull can significantly truncate a protoplanetary disk around the main star. In the case of HD 188753, the two stellar companions would truncate the disk around the main star to a radius of only 1.3 astronomical units, leaving no space for a planet to form.

"How that planet formed in such a complicated setting is very puzzling. I believe there is yet much to be learned about how giant planets are formed," says Konacki.

The research was funded by NASA.

 

 

Writer: 
Robert Tindol
Writer: 

Preferring a Taste and Recognizing It May Involve Separate Brain Areas, Study Shows

PASADENA, Calif.—Are you disgusted when you hear about Elvis Presley's fried peanut butter 'n 'nanner sandwiches? A new study shows that it could all be in your head. In fact, our taste preferences may have little to do with whether we can even recognize the substance we're eating or drinking.

In the current issue of Nature Neuroscience, California Institute of Technology neuroscientist Ralph Adolphs and his colleagues at the University of Iowa report on their examinations of a patient whose sense of taste has been severely compromised. The patient suffered from a herpes brain infection years ago that left him with brain damage. Today, the patient is unable to name even familiar foods by taste or by smell, and shows remarkably little preference in his choice of food and drink.

According to Adolphs, who is a professor of psychology and neuroscience at Caltech, the subject is a 72-year-old man, known as "B," whose brain infection destroyed his amygdala, hippocampus, the nearby temporal cortices, and the insula, and damaged several other brain structures. As a result, the patient today has a memory span of about 40 seconds, somewhat similar to that of the character in the film Memento.

As a result of his extensive brain damage, B is unable to recognize familiar people and many objects, although his vision and his use of language are unaffected. In terms of taste, he fails to recognize any familiar food items, and could probably outdo even Elvis by wading into a banana and mayonnaise sandwich with gusto.

"Our likes and dislikes in taste stem from both innate and cultural causes," Adolphs explains. "You may like sushi or bitter melon or certain smelly cheeses, whereas other people turn away from these foods in distaste."

The research shows that it may be possible to like or dislike certain foods without being able to recognize them at all, and that different regions of the brain are responsible for these two processes.

To test this hypothesis, the researchers set up an experiment in which B, several other subjects with brain damage, and several normal subjects were all offered salty and sweet drinks. All the subjects drank the sweet drinks and said they enjoyed them, and all with the notable exception of B said they found the saline drink disgusting.

By contrast, B drank the saline solution with a pleased expression, saying it "tasted like pop." However, when he was asked to sip both a salty and a sweet drink and to continue drinking the one he preferred, he chose the sweet one and took a pass on the salty one.

The researchers concluded that B, like most people, has some fundamental preference for sweet drinks over salty ones-which goes far to explain why soft drinks have always been made with sugar rather than salt-even if he is unaware of the identity of either. In sum, it would seem that B has no preference for drinks unless he can compare them within the 40-second span of his memory.

What does this mean for us regular tasters? According to Adolphs, taste information "that is meaningless for an isolated individual stimulus can yield relative values when the taste is structured as a comparison." In other words, there's something in your brain that indeed has a preference for a sweet drink over a salty one, but there's something else in your brain that disgusts you when you're given a salty drink when you know you could've had a cola.

The research was supported by grants from the National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke. The paper's coauthors are Daniel Tranel, Michael Koenigs, and Antonio R. Damasio, all of the University of Iowa's Department of Neurology and Neuroscience.

Writer: 
Robert Tindol
Writer: 

Researchers devise plasma experiment that shows how astrophysical jets are formed

PASADENA, Calif.--Applied physicists at the California Institute of Technology have devised a plasma experiment that shows how huge long, thin jets of material shoot out from exotic astrophysical objects such as young stars, black holes, and galactic nuclei.

Reporting in an upcoming issue of the journal Physical Review Letters, applied physics professor Paul Bellan, his graduate student Gunsu Yun, and postdoctoral scholar Setthivoine You describe how they create jets of plasma at will in an experimental device known as a "planar spheromak gun." The researchers form the jets by sending an intense electric current through a gas to form a plasma, after applying a background magnetic field to the whole system. The magnetized plasma then naturally tends to shoot out of the gun in the form of a long collimated filament.

According to Bellan, his research group is the first to achieve an experimental result showing how astrophysical jets are formed. Theorists have done mathematical modeling and computer simulations to show how known magnetohydrodynamic effects could explain the jet phenomenon, but the Bellan experiment actually creates similar jets in a lab device.

"We're not claiming to make scale models, but I think we've captured the essence of astrophysical jets," says Bellan, who has been working on this and related projects at Caltech since the late 1990s.

Although there are differences between astrophysical jets and the ones created in the spheromak gun, Bellan says there are also important similarities that link the 13-inch-long plasma jets created in the lab to the enormous jets in outer space. The similarity is primarily in the way that the magnetic flux tubes are straightened through a sort of squeezing effect that points to a common collimation process.

Astrophysical jets are accelerated by magnetic forces, but also carry along magnetic fields, the researchers explain. These magnetic fields are frozen into the plasma that makes up the jet and wrapped around the jet like rubber bands around a paper tube. The flowing plasma piles up, much like fast traffic coming up on slower traffic on a freeway, and this pile-up increases the plasma density just like the density of cars increases in a traffic jam.

The frozen-in bandlike magnetic field lines also become squeezed together in this "traffic jam," and so, just like rubber bands piling up on a paper tube, pinch down the diameter of the plasma jet, making it thin and even more dense.

Why do the researchers think this is an accurate portrayal of astrophysical jets? Because this is precisely how they make similar but smaller jets in their experiment.

"Very dense, fast, thin plasma jets observed in our laboratory experiments have been shown to be in good agreement with this picture," explains You.

Bellan says that the research stems from work he and his group have done for years in the formidable and longstanding effort to make fusion power an eventual reality. The current results have implications for the goal of containing the extremely hot plasma required for fusion, as well as for explaining certain exotic events in the cosmos.

 

 

Writer: 
RT

Single-Cell Recognition: A Halle Berry Brain Cell

Embargoed for release at 10 a.m., PDT, June 22, 2005

PASADENA, Calif. - World travelers can instantly identify the architectural sails of the Sydney Opera House, while movie aficionados can immediately I.D. Oscar-winning actress Halle Berry beneath her Catwoman costume or even in an artist's caricature. But how does the human brain instantly translate varied and abstract visual images into a single and consistently recognizable concept?

Now a research team of neuroscientists from the California Institute of Technology and UCLA has found that a single neuron can recognize people, landmarks, and objects--even letter strings of names ("H-A-L-L-E-B-E-R-R-Y"). The findings, reported in the current issue of the journal Nature, suggest that a consistent, sparse, and explicit code may play a role in transforming complex visual representations into long-term and more abstract memories.

"This new understanding of individual neurons as 'thinking cells' is an important step toward cracking the brain's cognition code," says co-senior investigator Itzhak Fried, a professor of neurosurgery at the David Geffen School of Medicine at UCLA, and a professor of psychiatry and biobehavioral sciences at the Semel Institute for Neuroscience and Human Behavior, also at UCLA. "As our understanding grows, we one day may be able to build cognitive prostheses to replace functions lost due to brain injury or disease, perhaps even for memory."

"Our findings fly in the face of conventional thinking about how brain cells function," adds Christof Koch, the Lois and Victor Troendle Professor of Cognitive and Behavioral Biology and professor of computation and neural systems at Caltech, and the other co-senior investigator. "Conventional wisdom views individual brain cells as simple switches or relays. In fact, we are finding that neurons are able to function more like a sophisticated computer."

The study is an example of the power of neurobiological research using data drawn directly from inside a living human brain. Most neurobiological research involves animals, postmortem tissue, or functional brain imaging in magnetic scanners. In contrast, these researchers draw data directly from the brains of eight consenting clinical patients with epilepsy at the UCLA Medical Center, wiring them with intracranial electrodes to identify the seizure origin for potential surgical treatment.

The team recorded responses from the medial temporal lobe, which plays a major role in human memory and is one of the first regions affected in patients with Alzheimer's disease. Responses by individual neurons appeared on a computer screen as spikes on a graph.

In the initial recording session, subjects viewed a large number of images of famous people, landmark buildings, animals, objects, and other images chosen after an interview. To keep the subjects focused, researchers asked them to push a computer key to indicate whether the image was a person. After determining which images prompted a significant response in at least one neuron, additional sessions tested response to three to eight variations of each of those images.

Responses varied with the person and stimulus. For example, a single neuron in the left posterior hippocampus of one subject responded to 30 out of 87 images. It fired in response to all pictures of actress Jennifer Aniston, but not at all, or only very weakly, to other famous and non-famous faces, landmarks, animals, or objects. The neuron also (and wisely, it turns out) did not respond to pictures of Jennifer Aniston together with actor Brad Pitt.

In another patient, pictures of Halle Berry activated a neuron in the right anterior hippocampus, as did a caricature of the actress, images of her in the lead role of the film Catwoman, and a letter sequence spelling her name. In a third subject, a neuron in the left anterior hippocampus responded to pictures of the landmark Sydney Opera House and Baha'í Temple, and also to the letter string "Sydney Opera," but not to other letter strings, such as "Eiffel Tower."

In addition to Koch and Fried, the research team included Rodrigo Quian-Quiroga of Caltech and UCLA, Leila Reddy of Caltech, and Gabriel Kreiman of the Massachusetts Institute of Technology.

The research was funded by grants from the National Institute of Neurological Disorders and Stroke, National Institute of Mental Health, the National Science Foundation, the Defense Advanced Research Projects Agency, the Office of Naval Research, the W. M. Keck Foundation Fund for Discovery in Basic Medical Research, a Whiteman fellowship, the Gordon Moore Foundation, the Sloan Foundation, and the Swartz Foundation for Computational Neuroscience.

MEDIA CONTACTS: Mark Wheeler, Caltech (626) 395-8733 wheel@caltech.edu

Dan Page, UCLA (310) 794-2265 dpage@mednet.ucla.edu

Writer: 
MW
Writer: 

New Propane-Burning Fuel Cell Could Energize a Future Generation of Small Electrical Devices

PASADENA, Calif.--Engineers have created a propane-burning fuel cell that's almost as small as a watch battery, yet many times higher in power density. Led by Sossina Haile of the California Institute of Technology, the team reports in the June 9 issue of the journal Nature that two of the cells have sufficient power to drive an MP3 player. If commercialized, such a fuel cell would have the advantage of driving the MP3 player for far longer than the best lithium batteries available.

According to Haile, who is an associate professor of materials science and of chemical engineering at Caltech, the new technology was made possible by a couple of key breakthroughs in fuel-cell technology. Chief among these was a novel method of getting the fuel cell to generate enough internal heat to keep itself hot, a requirement for producing power.

"Fuel cells have been done on larger scales with hydrocarbon fuels, but small fuel cells are challenging because it's hard to keep them at the high temperatures required to get the hydrocarbon fuels to react," Haile says. "In a small device, the surface-to-volume ratio is large, and because heat is lost through the surface that is generated in the volume, you have to use a lot of insulation to keep the cell hot. Adding insulation takes away the size advantage."

The new technology tackles this problem by burning just a bit of the fuel to generate heat to maintain the fuel cell temperature. The device could probably use a variety of hydrocarbon fuels, but propane is just about perfect because it is easily compressible into a liquid and because it instantly becomes a vapor when it is released. That's exactly what makes it ideal for your backyard barbecue grill.

"Actually, there are three advances that make the technology possible," Haile says. "The first is to make the fuel cells operate with high power outputs at lower temperatures than conventional hydrocarbon-burning fuel cells. The second is to use a single-chamber fuel cell that has only one inlet for premixed oxygen and fuel and a single outlet for exhaust, which makes for a very simple and compact fuel cell system. These advances were achieved here at Caltech."

"The third involves catalysts developed at Northwestern University that cause sufficient heat release to sustain the temperature of the fuel cell." In addition, a linear counter-flow heat exchanger makes sure that the hot gases exiting from the fuel cell transfer their heat to the incoming cold inlet gases.

Although the technology is still experimental, Haile says that future collaborations with design experts should tremendously improve the fuel efficiency. In particular, she and her colleagues are working with David Goodwin, a professor of mechanical engineering and applied physics at Caltech, on design improvements. One such improvement will be to incorporate compact "Swiss roll" heat exchangers, produced by collaborator Paul Ronney at USC.

As for applications, Haile says that the sky is literally the limit. Potential applications could include the tiny flying robots in which the defense funding agency DARPA has shown so much interest in recent years. For everyday uses, the fuel cells could also provide longer-lasting sources of power for laptop computers, television cameras, and pretty much any other device in which batteries are too heavy or too short-lived.

In addition to Haile, the other authors are Zongping Shao, a postdoctoral scholar in Haile's lab; Jeongmin Ahn and Paul D. Ronney, both of USC; and Zhongliang Zhan and Scott A. Barnett, both of Northwestern.

Writer: 
Robert Tindol
Writer: 
Exclude from News Hub: 
No

Andromeda Galaxy Three Times Bigger in Diameter Than Previously Thought

MINNEAPOLIS--The lovely Andromeda galaxy appeared as a warm fuzzy blob to the ancients. To modern astronomers millennia later, it appeared as an excellent opportunity to better understand the universe. In the latter regard, our nearest galactic neighbor is a gift that keeps on giving.

Scott Chapman, from the California Institute of Technology, and Rodrigo Ibata, from the Observatoire Astronomique de Strasbourg in France, have led a team of astronomers in a project to map out the detailed motions of stars in the outskirts of the Andromeda galaxy. Their recent observations with the Keck telescopes show that the tenuous sprinkle of stars extending outward from the galaxy are actually part of the main disk itself. This means that the spiral disk of stars in Andromeda is three times larger in diameter than previously estimated.

At the annual summer meeting of the American Astronomical Society today, Chapman will outline the evidence that there is a vast, extended stellar disk that makes the galaxy more than 220,000 light-years in diameter. Previously, astronomers looking at the visible evidence thought Andromeda was about 70,000 to 80,000 light-years across. Andromeda itself is about 2 million light-years from Earth.

The new dimensional measure is based on the motions of about 3,000 of the stars some distance from the disk that were once thought to be merely the "halo" of stars in the region and not part of the disk itself. By taking very careful measurements of the "radial velocities," the researchers were able to determine precisely how each star was moving in relation to the galaxy.

The results showed that the outlying stars are sitting in the plane of the Andromeda disk itself and, moreover, are moving at a velocity that shows them to be in orbit around the center of the galaxy. In essence, this means that the disk of stars is vastly larger than previously known.

Further, the researchers have determined that the nature of the "inhomogeneous rotating disk"-in other words, the clumpy and blobby outer fringes of the disk-shows that Andromeda must be the result of satellite galaxies long ago slamming together. If that were not the case, the stars would be more evenly spaced.

Ibata says, "This giant disk discovery will be very hard to reconcile with computer simulations of forming galaxies. You just don't get giant rotating disks from the accretion of small galaxy fragments."

The current results, which are the subject of two papers already available and a third yet to be published, are made possible by technological advances in astrophysics. In this case, the Keck/DEIMOS multi-object spectrograph affixed to the Keck II Telescope possesses the mirror size and light-gathering capacity to image stars that are very faint, as well as the spectrographic sensitivity to obtain highly accurate radial velocities.

A spectrograph is necessary for the work because the motion of stars in a faraway galaxy can only be detected within reasonable human time spans by inferring whether the star is moving toward us or away from us. This can be accomplished because the light comes toward us in discrete frequencies due to the elements that make up the star.

If the star is moving toward us, then the light tends to cram together, so to speak, making the light higher in frequency and "bluer." If the star is moving away from us, the light has more breathing room and becomes lower in frequency and "redder."

If stars on one side of Andromeda appear to be coming toward us, while stars on the opposite side appear to be going away from us, then the stars can be assumed to orbit the central object.

The extended stellar disk has gone undetected in the past because stars that appear in the region of the disk could not be known to be a part of the disk until their motions were calculated. In addition, the inhomogeneous "fuzz" that makes up the extended disk does not look like a disk, but rather appears to be a fragmented, messy halo built up from many previous galaxies' crashing into Andromeda, and it was assumed that stars in this region would be going every which way.

"Finding all these stars in an orderly rotation was the last explanation anyone would think of," says Chapman.

On the flip side, finding that the bulk of the complex structure in Andromeda's outer region is rotating with the disk is a blessing for studying the true underlying stellar halo of the galaxy. Using this new information, the researchers have been able to carefully measure the random motions of stars in the stellar halo, probing its mass and the form of the elusive dark matter that surrounds it.

Although the main work was done at the Keck Observatory, the original images that posed the possibility of an extended disk were taken with the Isaac Newton Telescope's Wide-Field Camera. The telescope, located in the Canary Islands, is intended for surveys, and in the case of this study, served well as a companion instrument.

Chapman says that further work will be needed to determine whether the extended disk is merely a quirk of the Andromeda galaxy, or is perhaps typical of other galaxies.

The main paper with which today's AAS news conference is concerned will be published this year in The Astrophysical Journal with the title "On the Accretion Origin of a Vast Extended Stellar Disk Around the Andromeda Galaxy." In addition to Chapman and Ibata, the other authors are Annette Ferguson, University of Edinburgh; Geraint Lewis, University of Sydney; Mike Irwin, Cambridge University; and Nial Tanvir, University of Hertfordshire.

 

 

Writer: 
Robert Tindol
Writer: 

New Study Suggests That State Proposal Would Drive Electricity Prices Higher

PASADENA, Calif.-A new study, on the organization of the wholesale electricity market conducted by California Institute of Technology and Purdue University economists, suggests that a plan being considered by the California Energy Commission (CEC) to require electric utility companies to make public their procurement strategies would result in higher costs for utility customers.

The study uses new laboratory experimental techniques that were developed by Caltech Professor Charles Plott to study the intricate ways in which the basic laws of supply and demand work in different forms of market organization. Use of the techniques has spread rapidly around the world. One of the first to use laboratory experimental methods in economics was Caltech alumnus Vernon Smith, who was awarded the Nobel Prize for his work.

The proposal considered by the CEC requires that the utility company make available its needs for electricity, as dictated by its customers, to the companies from which the utilities must buy their electricity. While the scientific operations of the law of supply and demand are intricate and present many challenges to science, the principles operating in this case are rather transparent. Common sense tells us that there are situations in life where letting our competitors in on our game plan is a sure way of decreasing our advantage.

For example, if you're a quarterback, the best way to make sure the fans see your team score a bunch of exciting touchdowns is certainly not to invite opposing team members into your huddle. Just as you know you should withhold information from the other football team, you also know that you should hide your cards from your poker competitors, and that you should avoid telling the used-car salesman how much money you can spend on a car.

Surprisingly, this common-sense approach to withholding information in competitive situations is still open to debate in the world of resource regulation. The proposal currently being considered by the CEC would require an openness that may seem like a good idea, but the Caltech and Purdue research shows that it flies in the face of science.

"A presumption exists in regulatory circles that openness of economic processes promotes efficiency in protecting the public interest," says Charles Plott, who is the Harkness Professor of Economics and Political Science at Caltech. "That may be true in political and bureaucratic processes, but it's not true in markets."

Plott and Timothy Cason of Purdue are the authors of a new study in the journal Economic Inquiry showing that the forced disclosure of information is bad for consumers in utilities markets, and that scientific experiments back them up. Their work addresses, in part, the CEC's announcement that it "does not believe that the California ratepayers will be harmed by a more transparent system."

Plott says that this is a long-standing and fallacious assumption that contradicts the basic laws of supply and demand. Nonetheless, it seems to persist because of a confusion between the desire for information that is characteristic of regulators and the efficient workings of a market.

"At face value, openness sounds good," explains Plott. "The argument is that the public needs to know as much as possible, and that by knowing more information the public is better able to monitor a company's behavior.

"But this is just not true, and common sense eventually tells you so," Plott says. "If you think about it, forcing a utility to reveal information about its plans about procurement of power from the wholesale markets doesn't make any more sense than forcing one player to play cards face-up in a poker game."

But the science argues against such disclosure, too, Plott says. Laboratory results in Plotts's Caltech experimental economics lab shows that forcing the utilities to reveal confidential information regarding their energy demands to suppliers will lead to higher prices for the consumer.

In short, if the rules are changed, California consumers can expect to pay higher average prices for electricity, Plott says. The exact amount of the price increases will be dictated by events that are unknown to us now, but it is easy to imagine situations in which the price increases could be on the order of 7 to 8 percent higher, and it is just as easy to imagine circumstances in which the impact of the disclosures could increase prices two or three times more. Under no circumstances would the disclosure lower prices.

In the experiments described in the Economic Inquiry paper, the researchers set up the procedure so that the volunteer test subjects would be financially motivated. The experiments were rather complicated and involved, but the objective was to test the influence of the wholesale power supplier's possession of pertinent information on the eventual price.

The experimental work showed that the manipulation of information strongly controlled the movement of the pricing equilibrium such that perturbations always went to the informed side. In everyday English, this means that a lower price results when buyers in a competitive market are not forced to "tip their hands."

Or to put it another way, the current system that requires each competitor to guess what the other is doing will result in their trying to beat each other out for the lowest price. The party that benefits from the competition is the consumer.

On the other hand, disclosure of information results in a lack of competition. The likely result is a higher price for the consumer, which could be especially burdensome in the future if the supply and demand for power is as unpredictable as it has been in the last couple of years. In fact, the paper concludes, the disclosure of information could work even greater hardships on the public if demand is unpredictable.

The title of the paper is "Forced Information Disclosure and the Fallacy of Transparency in Markets." The paper will appear in an upcoming issue.

 

 

 

Writer: 
Robert Tindol
Writer: 

Caltech Neuroscientists Unlock Secrets of How the Brain Is Wired for Sex

PASADENA--There are two brain structures that a mouse just can't do without when it comes to hooking up with the mate of its dreams--and trying to stay off the lunch menu of the neighborhood cat. These are the amygdala, which is involved in the initial response to cues that signal love or war, and the hypothalamus, which coordinates the innate reproductive or defensive behaviors triggered by these cues.

Now, neuroscientists have traced out the wiring between the amygdala and hypothalamus, and think they may have identified the genes involved in laying down the wiring itself. The researchers have also made inroads in understanding how the circuitry works to make behavioral decisions, such as when a mouse is confronted simultaneously with an opportunity to reproduce and an imminent threat.

Reporting in the May 19 issue of the journal Neuron, David Anderson, Caltech's Roger W. Sperry Professor of Biology and a Howard Hughes Medical Institute investigator, his graduate student Gloria Choi, and their colleagues describe their discovery that the neural pathway between the amygdala and hypothalamus thought to govern reproductive behaviors is marked by a gene with the rather unromantic name of Lhx6.

For a confirmation that their work was on track, the researchers checked to see what the suspected neurons were doing when the mice were sexually aroused. In male mice, the smell of female mouse urine containing pheromones was already known to be a sexual stimulus, evoking such behaviors as ultrasonic vocalization, a sort of "courtship song." Therefore, the detection of neural activity in the pathway when the mouse smelled the pheromones was the giveaway.

The idea that Lhx6 actually specifies the wiring of the pathway is still based on inference, because when the researchers knocked out the gene, the mutation caused mouse embryos to die of other causes too early to detect an effect on brain wiring. But the Lhx6 gene encodes a transcription factor in a family of genes whose members are known to control the pathfinding of axons, which are tiny wires that jut out from neurons and send messages to other neurons.

The pathway between the amygdala and hypothalamus that is involved in danger avoidance appears to be marked by other genes in the same family, called Lhx9 and Lhx5. However, the function of the circuits marked by these factors is not as clear, because a test involving smells to confirm the pathways was more ambiguous than the one involving sexual attraction. The smell of a cat did not clearly light up Lhx9- or Lhx5-positive cells. Nevertheless, the fact that those cells are found in brain regions implicated in defensive behaviors suggests they might be involved in other forms of behaviors, such as aggression between male mice.

The researchers also succeeded in locating the part of the mouse brain where a circuit-overriding mechanism exists when a mouse is both exposed to a potential mate and perceives danger. This wiring is a place in the hypothalamus where the pathways involved in reproduction and danger avoidance converge. The details of the way the axons are laid down shows that a mouse is clearly hard-wired to get out of harm's way, even though a mating opportunity simultaneously presents itself.

"We also have a behavioral confirmation, because it is known that male mice 'sing' in an ultrasonic frequency when they're sexually attracted," Anderson explains. "But when they're exposed to danger signals like predator odors, they freeze or hide.

"When we exposed the mice to both cat odor and female urine simultaneously, the male mice stopped their singing, as we predicted from the wiring diagram," he says. "So the asymmetry in the cross-talk suggests that the system is prioritized for survival first, mating second."

The inevitable question is whether this applies to humans as well. Anderson's answer is that similarities are likely, and that the same genes may even be involved.

"The brains of mice and humans have both of these structures, and we, like mice, are likely to have some hard-wired circuits for reproductive behavior and for defense," he says. "So it's not unreasonable to assume that some of the genes involved in these behaviors in mice are also involved in humans."

However, humans can also make conscious decisions and override the hard-wired circuitry. For example, two teenagers locked in an amorous embrace in a theater can ignore a horrid monster on the screen and continue with the activity at hand. In real-life circumstances, they would be more inclined to postpone the groping until they were out of danger.

"We obviously have the conscious ability to interrupt the circuit-overriding mechanism, to see if the threat is really important," Anderson says.

Gloria Choi, a doctoral student in biology, did most of the lab work involved in the study. The other collaborators are Hongwei Dong and Larry Swanson, a professor at USC who in the past has comprehensively mapped the neural wiring of the rat brain, and Andrew Murphy, David Valenzuela, and George Yancopoulos at Regeneron Pharmaceuticals, in Tarrytown, New York, who generated the genetically modified mice using a new high-throughput system that they developed, called Velocigene.

 

 

Writer: 
Robert Tindol
Writer: 

Pages