Caltech Senior Wins Churchill Scholarship

Caltech senior Andrew Meng has been selected to receive a Churchill Scholarship, which will fund his graduate studies at the University of Cambridge for the next academic year. Meng, a chemistry and physics major, was one of only 14 students nationwide who were chosen to receive the fellowship this year.

Sorting Out Stroking Sensations

The skin is a human being's largest sensory organ, helping to distinguish between a pleasant contact, like a caress, and a negative sensation, like a pinch or a burn. Previous studies have shown that these sensations are carried to the brain by different types of sensory neurons that have nerve endings in the skin. Only a few of those neuron types have been identified, however, and most of those detect painful stimuli. Now biologists at the California Institute of Technology (Caltech) have identified in mice a specific class of skin sensory neurons that reacts to an apparently pleasurable stimulus.

TEDxCaltech: Advancing Humanoid Robots

When Matanya Horowitz started his undergraduate work in 2006 at University of Colorado at Boulder, he knew that he wanted to work in robotics—mostly because he was disappointed that technology had not yet made good on his sci-fi–inspired dreams of humanoid robots. "The best thing we had at the time was the Roomba, which is a great product, but compared to science fiction it seemed really diminutive," says Horowitz. He therefore decided to major in not just electrical engineering, but also economics, applied math, and computer science. "I thought that the answer to better robots would lie somewhere in the middle of these different subjects, and that maybe each one held a different key," he explains. Now a doctoral student at Caltech—he earned his masters in the same four years as his multiple undergrad degrees—Horowitz is putting his range of academic experience to work in the labs of engineers Joel Burdick and John Doyle to help advance robotics and intelligent systems

TEDxCaltech: If You Click a Cookie with a Mouse

When offered spinach or a cookie, how do you decide which to eat? Do you go for the healthy choice or the tasty one? To study the science of decision making, researchers in the lab of Caltech neuroeconomist Antonio Rangel analyze what happens inside people's brains as they choose between various kinds of food. The researchers typically use functional magnetic resonance imaging (fMRI) to measure the changes in oxygen flow through the brain; these changes serve as proxies for spikes or dips in brain activity. Recently, however, investigators have started using a new technique that may better tease out how you choose between the spinach or the cookie—a decision that's often made in a fraction of a second.

Research Update: Atomic Motions Help Determine Temperatures Inside Earth

In December 2011, Caltech mineral-physics expert Jennifer Jackson reported that she and a team of researchers had used diamond-anvil cells to compress tiny samples of iron—the main element of the earth's core. By squeezing the samples to reproduce the extreme pressures felt at the core, the team was able to get a closer estimate of the melting point of iron. At the time, the measurements that the researchers made were unprecedented in detail. Now, they have taken that research one step further by adding infrared laser beams to the mix.

TEDxCaltech: Surmounting the Blood-Brain Barrier

The brain needs its surroundings to be just right. That is, unlike some internal organs, such as the liver, which can process just about anything that comes its way, the brain needs to be protected and to have a chemical environment with the right balance of proteins, sugars, salts, and other metabolites.

A Cloudy Mystery

It's the mystery of the curiously dense cloud. And astronomers at the California Institute of Technology (Caltech) are on the case. Near the crowded galactic center, where billowing clouds of gas and dust cloak a supermassive black hole three million times as massive as the sun—a black hole whose gravity is strong enough to grip stars that are whipping around it at thousands of kilometers per second—one particular cloud has baffled astronomers. Indeed, the cloud, dubbed G0.253+0.016, defies the rules of star formation.

Faulty Behavior

In an earthquake, ground motion is the result of waves emitted when the two sides of a fault move—or slip—rapidly past each other, with an average relative speed of about three feet per second. Not all fault segments move so quickly, however—some slip slowly, through a process called creep, and are considered to be "stable," or not capable of hosting rapid earthquake-producing slip. One common hypothesis suggests that such creeping fault behavior is persistent over time, with currently stable segments acting as barriers to fast-slipping, shake-producing earthquake ruptures. But a new study by researchers at the California Institute of Technology (Caltech) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) shows that this might not be true.

Planets Abound

Look up at the night sky and you'll see stars, sure. But you're also seeing planets—billions and billions of them. At least. That's the conclusion of a new study by astronomers at the California Institute of Technology (Caltech) that provides yet more evidence that planetary systems are the cosmic norm. The team made their estimate while analyzing planets orbiting a star called Kepler-32—planets that are representative, they say, of the vast majority in the galaxy and thus serve as a perfect case study for understanding how most planets form.

Unlocking New Talents in Nature

Protein engineers at Caltech have tapped into a hidden talent of one of nature's most versatile catalysts. The enzyme cytochrome P450 is nature's premier oxidation catalyst—a protein that typically promotes reactions that add oxygen atoms to other chemicals. Now the Caltech researchers have engineered new versions of the enzyme, unlocking its ability to drive a completely different and synthetically useful reaction that does not take place in nature.

Pages

Subscribe to RSS - research_news