09/30/2008 07:00:00
Kathy Svitil
How a cell achieves the coordinated control of a number of genes at the same time, a process that's necessary for it to regulate its own behavior and development, has long puzzled scientists. Michael Elowitz, an assistant professor of biology and applied physics at the California Institute of Technology (Caltech), along with Long Cai, a postdoctoral research scholar at Caltech, and graduate student Chiraj Dalal, have discovered a surprising answer. Just as human engineers control devices ranging from dimmer switches to retrorockets using pulsed--or frequency modulated (FM)--signals, cells tune the expression of groups of genes using discrete bursts of activation.
09/25/2008 07:00:00
Kathy Svitil
An explanation for a strange property of noctilucent clouds--thin, wispy clouds hovering at the edge of space at 85 km altitude--has been proposed by an experimental plasma physicist at the California Institute of Technology (Caltech), possibly laying to rest a decades-long mystery.
09/03/2008 07:00:00
Kathy Svitil
The advantage of using two eyes to see the world around us has long been associated solely with our capacity to see in three dimensions. Now, a new study by scientists at Rensselaer Polytechnic Institute in New York and the California Institute of Technology (Caltech) has uncovered a truly eye-opening advantage to binocular vision: the ability to see through things.
08/29/2008 07:00:00
Kathy Svitil
Scientists at the California Institute of Technology (Caltech) have developed a simple process for mass producing molecular tubes of identical--and precisely programmable--circumferences. The technological feat may allow the use of the molecular tubes in a number of nanotechnology applications.
08/28/2008 07:00:00
Kathy Svitil
Over the past two decades, Michael Dickinson has been interviewed by reporters hundreds of times about his research on the biomechanics of insect flight. One question from the press has always dogged him: Why are flies so hard to swat?
08/15/2008 07:00:00
Kathy Svitil
Researchers at the California Institute of Technology have developed a novel way to churn out large quantities of drugs, including antiplaque toothpaste additives, antibiotics, nicotine, and even morphine, using mini biofactories--in yeast.
08/06/2008 07:00:00
Kathy Svitil
Individuals with synesthesia perceive the world in a different way from the rest of us. Because their senses are cross-activated, some synesthetes perceive numbers or letters as having colors or days of the week as possessing personalities, even as they function normally in the world. Now, researchers at the California Institute of Technology have discovered a type of synesthesia in which individuals hear sounds, such as tapping, beeping, or whirring, when they see things move or flash. Surprisingly, the scientists say, auditory synesthesia may not be unusual--and may simply represent an enhanced form of how the brain normally processes visual information.
07/30/2008 07:00:00
Kathy Svitil
Organisms ranging from humans to plants to the lowliest bacterium use molecules to communicate. Some chemicals trigger the various stages of an organism's development, and still others are used to attract members of the opposite sex. Researchers at the California Institute of Technology have now found a rare kind of signaling molecule in the nematode worm Caenorhabditis elegans that serves a dual purpose, working as both a population-control mechanism and a sexual attractant.
07/29/2008 07:00:00
Kathy Svitil

Bars abound in spiral galaxies today, but this was not always the case. A group of 16 astronomers, led by Kartik Sheth of NASA's Spitzer Science Center at the California Institute of Technology, has found that bars tripled in number over the past seven billion years, indicating that spiral galaxies evolve in shape.

07/28/2008 07:00:00
Kathy Svitil

Researchers at the California Institute of Technology have turned science fiction into reality with their development of a super-compact high-resolution microscope, small enough to fit on a finger tip. This "microscopic microscope" operates without lenses but has the magnifying power of a top-quality optical microscope, can be used in the field to analyze blood samples for malaria or check water supplies for giardia and other pathogens, and can be mass-produced for around $10.

Pages