Point of Light

As technology advances, it tends to shrink. From cell phones to laptops—powered by increasingly faster and tinier processors—everything is getting thinner and sleeker. And now light beams are getting smaller, too. Engineers at the California Institute of Technology (Caltech) have created a device that can focus light into a point just a few nanometers (billionths of a meter) across—an achievement they say may lead to next-generation applications in computing, communications, and imaging.

3-D Dentistry

A Caltech imaging innovation will ease your trip to the dentist and may soon energize home entertainment systems too.

More Evidence for an Ancient Grand Canyon

For over 150 years, geologists have debated how and when one of the most dramatic features on our planet—the Grand Canyon—was formed. New data unearthed by researchers at the California Institute of Technology (Caltech) builds support for the idea that conventional models, which say the enormous ravine is 5 to 6 million years old, are way off.

Reducing 20/20 Hindsight Bias

In a new study, recently published online in the journal Psychological Science, a team led by Colin Camerer and Shinsuke Shimojo not only found a way to predict the severity of the bias, but also identified a technique that successfully reduces it—a strategy that could help produce fairer assessments in situations such as medical malpractice suits and reviewing police or military actions.

High-Energy Physicists Smash Records for Network Data Transfer

Physicists led by the California Institute of Technology (Caltech) have smashed yet another series of records for data-transfer speed. The international team of high-energy physicists, computer scientists, and network engineers reached a transfer rate of 339 gigabits per second (Gbps)—equivalent to moving four billion gigabytes per day, nearly doubling last year's record. The team also reached a new record for a two-way transfer on a single link by sending data at 187 Gbps between Victoria, Canada, and Salt Lake City.

An Eye for Science: In the Lab of Markus Meister

Take one look around Markus Meister's new lab and office space on the top floor of the Beckman Behavioral Biology building, and you can tell that he has an eye for detail. Curving, luminescent walls change color every few seconds, wrapping around lab space and giving a warm glow to the open, airy offices that line the east wall. A giant picture of neurons serves as wallpaper, and a column is wrapped in an image from the inside of a retina. And while he may have picked up some tips from his architect wife to help direct the design of his lab, Meister is the true visionary—a biologist studying the details of the eye.

Nano Insights Could Lead to Improved Nuclear Reactors

In order to build the next generation of nuclear reactors, materials scientists are trying to unlock the secrets of certain materials that are radiation-damage tolerant. Now Caltech researchers have brought new understanding to one of those secrets—how the interfaces between two carefully selected metals can absorb, or heal, radiation damage.

A Fresh Look at Psychiatric Drugs

Drugs for psychiatric disorders such as depression and schizophrenia often require weeks to take full effect. "What takes so long?" has formed one of psychiatry's most stubborn mysteries. Now a fresh look at previous research on quite a different drug—nicotine—is providing answers. The new ideas may point the way toward new generations of psychiatric drugs that work faster and better.

How I Landed on Mars

Caltech geology graduate student Katie Stack says her Caltech experience has provided her with the best of both worlds. Literally. As one of five Caltech graduate students currently staffing the Mars Science Laboratory mission, Stack is simultaneously exploring the geologic pasts of both Mars and Earth. She and her student colleagues apply their knowledge of Earth's history and environment—gleaned from Caltech classes and field sites across the globe—to the analysis of Curiosity's discoveries as well as the hunt for evidence of past life on the Red Planet.

Developmental Bait and Switch

During the early developmental stages of vertebrates—animals that have a backbone and spinal column, including humans—cells undergo extensive rearrangements, and some cells migrate over large distances to populate particular areas and assume novel roles as differentiated cell types. Understanding how and when such cells switch their purpose in an embryo is an important and complex goal for developmental biologists. A recent study, led by researchers at the California Institute of Technology (Caltech), provides new clues about this process—at least in the case of neural crest cells, which give rise to most of the peripheral nervous system, to pigment cells, and to large portions of the facial skeleton.

Pages

Subscribe to RSS - research_news