TEDxCaltech: Surmounting the Blood-Brain Barrier

The brain needs its surroundings to be just right. That is, unlike some internal organs, such as the liver, which can process just about anything that comes its way, the brain needs to be protected and to have a chemical environment with the right balance of proteins, sugars, salts, and other metabolites.

A Cloudy Mystery

It's the mystery of the curiously dense cloud. And astronomers at the California Institute of Technology (Caltech) are on the case. Near the crowded galactic center, where billowing clouds of gas and dust cloak a supermassive black hole three million times as massive as the sun—a black hole whose gravity is strong enough to grip stars that are whipping around it at thousands of kilometers per second—one particular cloud has baffled astronomers. Indeed, the cloud, dubbed G0.253+0.016, defies the rules of star formation.

Faulty Behavior

In an earthquake, ground motion is the result of waves emitted when the two sides of a fault move—or slip—rapidly past each other, with an average relative speed of about three feet per second. Not all fault segments move so quickly, however—some slip slowly, through a process called creep, and are considered to be "stable," or not capable of hosting rapid earthquake-producing slip. One common hypothesis suggests that such creeping fault behavior is persistent over time, with currently stable segments acting as barriers to fast-slipping, shake-producing earthquake ruptures. But a new study by researchers at the California Institute of Technology (Caltech) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) shows that this might not be true.

Planets Abound

Look up at the night sky and you'll see stars, sure. But you're also seeing planets—billions and billions of them. At least. That's the conclusion of a new study by astronomers at the California Institute of Technology (Caltech) that provides yet more evidence that planetary systems are the cosmic norm. The team made their estimate while analyzing planets orbiting a star called Kepler-32—planets that are representative, they say, of the vast majority in the galaxy and thus serve as a perfect case study for understanding how most planets form.

Unlocking New Talents in Nature

Protein engineers at Caltech have tapped into a hidden talent of one of nature's most versatile catalysts. The enzyme cytochrome P450 is nature's premier oxidation catalyst—a protein that typically promotes reactions that add oxygen atoms to other chemicals. Now the Caltech researchers have engineered new versions of the enzyme, unlocking its ability to drive a completely different and synthetically useful reaction that does not take place in nature.

Research Update: Wordy Worms and Their Eavesdropping Predators

For over 25 years, Paul Sternberg has been studying worms—how they develop, why they sleep, and, more recently, how they communicate. Now, he has flipped the script a bit by taking a closer look at how predatory fungi may be tapping into worm conversations to gain clues about their whereabouts.

Caltech-Led Astronomers Discover Galaxies Near Cosmic Dawn

A team of astronomers led by the California Institute of Technology (Caltech) has used NASA's Hubble Space Telescope to discover seven of the most primitive and distant galaxies ever seen. One of the galaxies, the astronomers say, might be the all-time record holder—the galaxy as observed existed when the universe was merely 380 million years old. All of the newly discovered galaxies formed more than 13 billion years ago, when the universe was just about 4 percent of its present age, a period astronomers call the "cosmic dawn," when the first galaxies were born. The universe is now 13.7 billion years old. The new observations span a period between 350 million and 600 million years after the Big Bang and represent the first reliable census of galaxies at such an early time in cosmic history, the team says.

Social Synchronicity

Humans have a tendency to spontaneously synchronize their movements. For example, the footsteps of two friends walking together may synchronize, although neither individual is consciously aware that it is happening. Similarly, the clapping hands of an audience will naturally fall into synch. Although this type of synchronous body movement has been observed widely, its neurological mechanism and its role in social interactions remain obscure. A new study, led by cognitive neuroscientists at the California Institute of Technology (Caltech), has found that body-movement synchronization between two participants increases following a short session of cooperative training, suggesting that our ability to synchronize body movements is a measurable indicator of social interaction.

Top 12 in 2012

Credit: Benjamin Deverman/Caltech

Gene therapy for boosting nerve-cell repair

Caltech scientists have developed a gene therapy that helps the brain replace its nerve-cell-protecting myelin sheaths—and the cells that produce those sheaths—when they are destroyed by diseases like multiple sclerosis and by spinal-cord injuries. Myelin ensures that nerve cells can send signals quickly and efficiently.

Credit: L. Moser and P. M. Bellan, Caltech

Understanding solar flares

By studying jets of plasma in the lab, Caltech researchers discovered a surprising phenomenon that may be important for understanding how solar flares occur and for developing nuclear fusion as an energy source. Solar flares are bursts of energy from the sun that launch chunks of plasma that can damage orbiting satellites and cause the northern and southern lights on Earth.

Coincidence—or physics?

Caltech planetary scientists provided a new explanation for why the "man in the moon" faces Earth. Their research indicates that the "man"—an illusion caused by dark-colored volcanic plains—faces us because of the rate at which the moon's spin rate slowed before becoming locked in its current orientation, even though the odds favored the moon's other, more mountainous side.

Choking when the stakes are high

In studying brain activity and behavior, Caltech biologists and social scientists learned that the more someone is afraid of loss, the worse they will perform on a given task—and that, the more loss-averse they are, the more likely it is that their performance will peak at a level far below their actual capacity.

Credit: NASA/JPL-Caltech

Eyeing the X-ray universe

NASA's NuSTAR telescope, a Caltech-led and -designed mission to explore the high-energy X-ray universe and to uncover the secrets of black holes, of remnants of dead stars, of energetic cosmic explosions, and even of the sun, was launched on June 13. The instrument is the most powerful high-energy X-ray telescope ever developed and will produce images that are 10 times sharper than any that have been taken before at these energies.

Credit: CERN

Uncovering the Higgs Boson

This summer's likely discovery of the long-sought and highly elusive Higgs boson, the fundamental particle that is thought to endow elementary particles with mass, was made possible in part by contributions from a large contingent of Caltech researchers. They have worked on this problem with colleagues around the globe for decades, building experiments, designing detectors to measure particles ever more precisely, and inventing communication systems and data storage and transfer networks to share information among thousands of physicists worldwide.

Credit: Peter Day

Amplifying research

Researchers at Caltech and NASA's Jet Propulsion Laboratory developed a new kind of amplifier that can be used for everything from exploring the cosmos to examining the quantum world. This new device operates at a frequency range more than 10 times wider than that of other similar kinds of devices, can amplify strong signals without distortion, and introduces the lowest amount of unavoidable noise.

Swims like a jellyfish

Caltech bioengineers partnered with researchers at Harvard University to build a freely moving artificial jellyfish from scratch. The researchers fashioned the jellyfish from silicon and muscle cells into what they've dubbed Medusoid; in the lab, the scientists were able to replicate some of the jellyfish's key mechanical functions, such as swimming and creating feeding currents. The work will help improve researchers' understanding of tissues and how they work, and may inform future efforts in tissue engineering and the design of pumps for the human heart.

Credit: NASA/JPL-Caltech

Touchdown confirmed

After more than eight years of planning, about 354 million miles of space travel, and seven minutes of terror, NASA's Mars Science Laboratory successfully landed on the Red Planet on August 5. The roving analytical laboratory, named Curiosity, is now using its 10 scientific instruments and 17 cameras to search Mars for environments that either were once—or are now—habitable.

Credit: Caltech/Michael Hoffmann

Powering toilets for the developing world

Caltech engineers built a solar-powered toilet that can safely dispose of human waste for just five cents per use per day. The toilet design, which won the Bill and Melinda Gates Foundation's Reinventing the Toilet Challenge, uses the sun to power a reactor that breaks down water and human waste into fertilizer and hydrogen. The hydrogen can be stored as energy in hydrogen fuel cells.

Credit: Caltech / Scott Kelberg and Michael Roukes

Weighing molecules

A Caltech-led team of physicists created the first-ever mechanical device that can measure the mass of an individual molecule. The tool could eventually help doctors to diagnose diseases, and will enable scientists to study viruses, examine the molecular machinery of cells, and better measure nanoparticles and air pollution.

Splitting water

This year, two separate Caltech research groups made key advances in the quest to extract hydrogen from water for energy use. In June, a team of chemical engineers devised a nontoxic, noncorrosive way to split water molecules at relatively low temperatures; this method may prove useful in the application of waste heat to hydrogen production. Then, in September, a group of Caltech chemists identified the mechanism by which some water-splitting catalysts work; their findings should light the way toward the development of cheaper and better catalysts.


In 2012, Caltech faculty and students pursued research into just about every aspect of our world and beyond—from understanding human behavior, to exploring other planets, to developing sustainable waste solutions for the developing world.

In other words, 2012 was another year of discovery at Caltech. Here are a dozen research stories, which were among the most widely read and shared articles from Caltech.edu.

Did we skip your favorite? Connect with Caltech on Facebook to share your pick.

A New Tool for Secret Agents—And the Rest of Us

Caltech electrical engineers have developed inexpensive silicon microchips that generate and radiate terahertz (THz) waves. These high-frequency electromagnetic waves fall into a largely untapped region of the electromagnetic spectrum—between microwaves and far-infrared radiation—and can penetrate a host of materials without the ionizing damage of X-rays.


Subscribe to RSS - research_news