Developing the Next Generation of Microsensors

Setting the stage for a new class of motional sensors, Caltech researchers have developed a new ultrasensitive, microchip-scale accelerometer that uses laser light to measure displacement.

How I Spent My Summer Vacation

Last summer, Caltech junior Julie Jester worked on a project that might one day partially counteract blindness caused by a deteriorating retina. Her job: to help Assistant Professor of Electrical Engineering Azita Emami and her graduate students create the communications link between a tiny camera and a novel wireless neural stimulator that can be surgically inserted into the eye.

Now in its 34th year, Caltech's Summer Undergraduate Research Fellowships (SURF) program has paired nearly 7,000 students with real-world, hands-on projects in the labs of Caltech faculty and JPL staff.

Traveling with Purpose

Pamela Bjorkman has been studying HIV at Caltech since 2005. In the lab, she has made significant gains in the fight against the virus, developing antibodies that neutralize most strains. But years spent at the bench were beginning to make her feel disconnected from the possible impact of her work. So this summer she visited India, spending time with HIV-positive women and others who are at risk.

Caltech Biologist Named MacArthur Fellow

Sarkis Mazmanian, a microbiology expert at the California Institute of Technology (Caltech) whose studies of human gut bacteria have revealed new insights into how these microbes can be beneficial, was named a MacArthur Fellow and awarded a five-year, $500,000 “no strings attached” grant.

Mars Rover Finds Evidence of Ancient Streambed

An ankle- or hip-deep stream once flowed with force across the surface of Mars in the very spot where NASA's Curiosity rover is currently exploring. The finding, announced by members of the project's science team today at the Jet Propulsion Laboratory (JPL), provides new information about a once wet environment in Gale Crater, the ancient impact crater where the rover touched down in early August.

Ready for Your Close-Up?

As the saying goes, "A picture is worth a thousand words." For people in certain professions—acting, modeling, and even politics—this phrase rings particularly true. Previous studies have examined how our social judgments of pictures of people are influenced by factors such as whether the person is smiling or frowning, but until now one factor has never been investigated: the distance between the photographer and the subject. According to a new study by researchers at the California Institute of Technology (Caltech), this turns out to make a difference—close-up photo subjects, the study found, are judged to look less trustworthy, less competent, and less attractive.

Moving Targets

At any given moment, millions of cells are on the move in the human body, typically on their way to aid in immune response, make repairs, or provide some other benefit to the structures around them. When the migration process goes wrong, however, the results can include tumor formation and metastatic cancer. Little has been known about how cell migration actually works, but now, with the help of some tiny worms, researchers at the California Institute of Technology (Caltech) have gained new insight into this highly complex task.

Martian Clay Minerals Might Have Much Hotter Origin

Several hypotheses have been proposed to explan how clay minerals detected on the surface of Mars were formed. Now, publishing in the journal Nature Geoscience, a team of French and American scientists including Caltech's Bethany Ehlmann, has suggested a new possibility. The Los Angeles Times recently spoke to Ehlmann about the paper and its implications.

Happy 35th Birthday, Voyager!

Today, September 5, marks the 35th anniversary of the launch of Voyager 1, which lifted off in 1977 on a Titan III–Centaur launch system just 16 days after its twin, Voyager 2. Now 11 billion and 9 billion miles from the sun, respectively, the spacecraft are the farthest-flung man-made objects, traveling every 100 days a distance equal to that between sun and Earth.

Showing the Way to Improved Water-Splitting Catalysts

Scientists and engineers around the world are working to find a way to power the planet using solar-powered fuel cells. Such green systems would split water during daylight hours, generating hydrogen that could be stored and used later to produce water and electricity. But robust catalysts are needed to drive the water-splitting reaction. Now Caltech chemists have determined the mechanism by which some highly effective cobalt catalysts work.

Pages

Subscribe to RSS - research_news