Improving Computer Graphics with Quantum Mechanics

Caltech applied scientists have developed a new way to simulate large-scale motion numerically using the mathematics that govern the universe at the quantum level.

The new technique, presented at the International Conference and Exhibition on Computer Graphics & Interactive Techniques (SIGGRAPH), held in Anaheim, California, from July 24-28, allows computers to more accurately simulate vorticity, the spinning motion of a flowing fluid.

A smoke ring, which seems to turn itself inside out endlessly as it floats along, is a complex demonstration of vorticity, and is incredibly difficult to simulate accurately, says Peter Schröder, Shaler Arthur Hanisch Professor of Computer Science and Applied and Computational Mathematics in the Division of Engineering and Applied Science.

"Since we are computer graphics folks, we are interested in methods that capture the visual variety and drama of fluids well," says Schröder. "What's unique about our method is that we took a page from the quantum mechanics's 'playbook.'"

The Schrödinger equation, the basic description of quantum mechanical behavior, can be used to describe the motion of superfluids, which are fluids supercooled to temperatures near absolute zero that behave as though they are without viscosity. Viscosity is a fluid's resistance to deformation.  

"Caltech's Richard Feynman was one of the first to recognize that superfluids are governed by so-called vortex filaments, which are basically long strings of pure vorticity," Schröder says. "While we are not interested in quantum mechanics, we realized that the Schrödinger equation—with some tweaks—can also approximate fluids at the macroscopic level, from smoke gently rising from a flame to the concentrated vorticity of a tornadic storm."

When asked why the Schrödinger equation, usually reserved for effects at the atomic level, does so well for fluids at the macroscopic level, Schröder says, "The Schrödinger equation, as we use it, is a close relative of the non-linear Schrödinger equation which is used for the description of superfluids. Their vorticity behavior is in many ways very similar to the behavior we can also observe in the macroscopic world."

Schröder hopes his work will have an impact on computer-generated graphics, and may also be used to model real-world phenomena, such as the curling motion of a hurricane.

Schröder's paper, entitled "Schrödinger's Smoke," was presented on July 26. His coauthors include Albert Chern, a graduate student at Caltech; Felix Knöppel and Ulrich Pinkall of Technische Universität Berlin; and Steffen Weißmann of Google. This research was supported by the German Research Foundation, the Office of Naval Research, and the German Academic Exchange Service.

Home Page Title: 
Schrödinger's Smoke
Listing Title: 
Improving Computer Graphics with Quantum Mechanics
Contact: 
Writer: 
Exclude from News Hub: 
No
Short Title: 
Schrödinger's Smoke
News Type: 
Research News
Teaser Image: 
Exclude from Home Page: 

Team of Proteins Works Together to Turn on T Cells

The fates of various cells in our bodies—whether they become skin or another type of tissue—are controlled by genetic switches. In a new study, Caltech scientists investigate the switch for T cells, which are immune cells produced in the thymus that destroy virus-infected cells and cancers. The researchers wanted to know how cells make the choice to become T cells.

"We already know which genetic switch directs cells to commit to becoming T cells, but we wanted to figure out what enables that switch to be turned on," says Hao Yuan Kueh, a postdoctoral scholar at Caltech and lead author of a Nature Immunology report about the work, published on July 4.

The study found that a group of four proteins, specifically DNA-binding proteins known as transcription factors, work in a multi-tiered fashion to control the T-cell genetic switch in a series of steps. This was a surprise because transcription factors are widely assumed to work in a simultaneous, all-at-once fashion when collaborating to regulate genes.

The results may ultimately allow doctors to boost a person's T-cell population. This has potential applications in fighting various diseases, including AIDS, which infects mature T cells.

"In the past, combinatorial gene regulation was thought to involve all the transcription factors being required at the same time," says Kueh, who works in the lab of  Ellen Rothenberg, Caltech's Albert Billings Ruddock Professor of Biology. "This was particularly true in the case of the genetic switch for T-cell commitment, where it was thought that a quorum of the factors working simultaneously was needed to ensure that the gene would only be expressed in the right cell type."

The authors report that a key to their finding was the ability to image live cells in real-time. They genetically engineered mouse cells so that a gene called Bcl11b—the key switch for T cells—would express a fluorescent protein in addition to its own Bcl11b protein. This caused the mouse cells to glow when the Bcl11b gene was turn on. By monitoring how different transcription factors, or proteins, affected the activation of this genetic switch in individual cells, the researchers were able to isolate the distinct roles of the proteins.

The results showed that four proteins work together in three distinct steps to flip the switch for T cells. Kueh says to think of the process as a team of people working together to get a light turned on. He says first two proteins in the chain (TCF1 and GATA3) open a door where the main light switch is housed, while the next protein (Notch) essentially switches the light on. A fourth protein (Runx1) controls the amplitude of the signal, like sliding a light dimmer.

"We identify the contributions of four regulators of Bcl11b, which are all needed for its activation but carry out surprisingly different functions in enabling the gene to be turned on," says Rothenberg. "It's interesting—the gene still needs the full quorum of transcription factors, but we now find that it also needs them to work in the right order. This makes the gene respond not only to the cell's current state, but also to the cell's recent developmental history."

Team member Kenneth Ng, a visiting student from California Polytechnic State University, says he was surprised by how much detail they could learn about gene regulation using live imaging of cells.

"I had read about this process in textbooks, but here in this study we could pinpoint what the proteins are really doing," he says.

The next step in the research is to get a closer look at precisely how the T cell genetic switch itself works. Kueh says he wants to "unscrew the panels" of the switch and understand what is physically going on in the chromosomal material around the Bcl11b gene.

The Nature Immunology paper, titled, "Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment," includes seven additional Caltech coauthors: Mary Yui, Shirley Pease, Jingli Zhang, Sagar Damle, George Freedman, Sharmayne Siu, and Michael Elowitz; as well as a collaborator at the Fred Hutchinson Cancer Research Center, Irwin Bernstein. The work at Caltech was funded by a CRI/Irvington Postdoctoral Fellowship, the National Institutes of Health, the California Institute for Regenerative Medicine, the Al Sherman Foundation, and the Louis A. Garfinkle Memorial Laboratory Fund.

Home Page Title: 
Proteins Work Together to Turn on T Cells
Contact: 
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 

Community Seismic Network Detected Air Pulse From Refinery Explosion

Tight network of low-cost detectors improve resolution of seismic data gathering and could offer city inspectors crucial information on building damage after a quake

On February 18, 2015, an explosion rattled the ExxonMobil refinery in Torrance, causing ground shaking equivalent to that of a magnitude-2.0 earthquake and blasting out an air pressure wave similar to a sonic boom.

Traveling at 343 meters per second—about the speed of sound—the air pressure wave reached a 52-story high-rise in downtown Los Angeles 66 seconds after the blast.

The building's occupants probably did not notice a thing; the building shifted at most three-hundredths of a millimeter in response. But the building's seismometers—one is installed on every floor, as well as on the basement levels—noted and recorded the motion of each individual floor.

Those sensors are part of the Community Seismic Network (CSN), a project launched at Caltech in 2011 to seed the Los Angeles area with relatively inexpensive seismometers aimed at providing a high level of detail of how an earthquake shakes the Southern California region, as well as how individual buildings respond. That level of detail has the potential to provide critical and immediate information about whether the building is structurally compromised in the wake of an earthquake, says Caltech's Monica Kohler, research assistant professor in the Division of Engineering and Applied Science.

For example, if building inspectors know that inter-story drift—the displacement of each floor relative to the floors immediately below and above it—has exceeded certain limits based on the building's size and construction, then it is a safe bet that the building has suffered damage in a quake. Alternately, if inspectors know that a building has experienced shaking well within its tolerances, it could potentially be reoccupied sooner—helping an earthquake-struck city to more quickly get back to normal.

"We want first responders, structural engineers, and facilities engineers to be able to make decisions based on what the data say," says Kohler, the lead author of a paper detailing the high-rise's response that recently appeared in the journal Earthquake Spectra.

The keys to the CSN's success are affordability and ease of installation of its seismic detectors. Standard, high-quality seismic detectors can cost tens of thousands of dollars and need special vaults to house and protect them that can easily double the price. By contrast, the CSN detectors use $40 accelerometers and other off-the-shelf hardware, cost roughly $300 to build, and require minimal training to install. Approximately 700 of the devices have been installed so far, mostly in Los Angeles.

However, the CSN sensors are roughly 250 times less sensitive than their more expensive counterparts, which is why the ability to successfully detect and quantify the downtown building's response to the ExxonMobil explosion was such an important proof-of-concept.

"It's a validation of our approach," says CSN's project manager, Richard Guy.

Sonic booms have been noted by seismic networks dozens of times before, beginning in the 1980s with the first detections of seismic shaking caused by space-shuttle reentries. The sonic booms, found Hiroo Kanamori and colleagues at Caltech and the United States Geological Survey, rattled buildings that, in turn, shook the ground around them.

"Seismologists try to understand what is happening in the earth and how that affects buildings by looking at everything we see on seismograms," says Kanamori, Caltech's John E. and Hazel S. Smits Professor of Geophysics, Emeritus, and coauthor of the Earthquake Spectra paper. "In most cases, signals come from the interior of the earth, but nothing prevents us from studying signals from the air. Though rare, the signals from the air provide a new dimension in the field of seismology."

The earlier sonic boom detections were made using single-channel devices, which typically record motion in one direction only. While this information is useful for understanding ground shaking, a three-dimensional record of the floor-by-floor motion of a building can reveal how much a building is rocking, swaying, and shifting; two or more sensors installed per floor can show the twisting of the structure.

"The more sensors you have in a small area, the more detail you're going to see. If there are things happening on a small scale, you'll never see it until you have sensors deployed on that scale," Kohler says.

Kohler and her colleagues found that the air pressure wave from the explosion had about the same impact on the high-rise as an 8 mile-per-hour gust of wind. A pressure wave about 100 times larger would have been required to have broken windows in the building; a wave 1,000 times larger would have been necessary to cause significant damage to the building.

The ExxonMobil blast was not the first shaking recorded by the building's seismometers. A number of earthquakes—including a magnitude-4.2 quake on January 4, 2015, with an epicenter in Castaic Lake, about 40 miles northwest of downtown Los Angeles—also were registered by the seismic detectors on nearly every floor of the building. But the refinery explosion-induced shaking was an important test of the sensitivity of the instruments, and of the ability of researchers to separate earthquake signals from other sources of shaking.

Other authors of the Earthquake Spectra paper, "Downtown Los Angeles 52-Story High-Rise and Free-Field Response to an Oil Refinery Explosion," include Caltech's Anthony Massari, Thomas Heaton, Egill Hauksson, Robert Clayton, Julian Bunn, and K. M. Chandy. Funding for the CSN came from the Gordon and Betty Moore Foundation, the Terrestrial Hazard Observation and Reporting Center at Caltech, and the Divisions of Geological and Planetary Sciences and Engineering and Applied Science at Caltech. 

Home Page Title: 
Seismic Network Notes Air Pressure Wave
Listing Title: 
Community Seismic Network Detected Air Pulse From Refinery Explosion
Contact: 
Writer: 
Exclude from News Hub: 
No
Short Title: 
Seismic Network Detected Explosion
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
Community Seismic Network sensors detected motion of each floor of a building in response to the 2015 ExxonMobil refinery explosion.

NASA Rover's Sand-Dune Studies Yield Surprise

Some of the wind-sculpted sand ripples on Mars are a type not seen on Earth, and their relationship to the thin Martian atmosphere today provides new clues about the history of Mars' atmosphere.

The determination that these mid-size ripples are a distinct type resulted from observations by NASA's Curiosity Mars rover. Six months ago, Curiosity made the first up-close study of active sand dunes anywhere other than Earth, at the "Bagnold Dunes" on the northwestern flank of Mars' Mount Sharp.

"Earth and Mars both have big sand dunes and small sand ripples, but on Mars, there's something in-between that we don't have on Earth," said Mathieu Lapotre, a graduate student at Caltech, Pasadena, California, and science-team collaborator for NASA's Curiosity Mars rover mission. He is the lead author of a report about these mid-size ripples published in the July 1 issue of the journal Science. 

Read the full story from JPL News

Writer: 
Guy Webster/JPL
Home Page Title: 
Sand Dunes on Mars
Listing Title: 
NASA Rover's Sand-Dune Studies Yield Surprise
Contact: 
Exclude from News Hub: 
No
Short Title: 
NASA Rover's Sand-Dune Studies Yield Surprise
News Type: 
Research News
Exclude from Home Page: 

Scientists Transform Lower-Body Cells into Facial Cartilage

Caltech scientists have converted cells of the lower-body region into facial tissue that makes cartilage, in new experiments using bird embryos. The researchers discovered a "gene circuit," composed of just three genes, that can alter the fate of cells destined for the lower bodies of birds, turning them instead into cells that produce cartilage and bones in the head.

The results, published in the June 24 issue of the journal Science, could eventually lead to therapies for conditions where facial bone or cartilage is lost. For example, cartilage destroyed in the nose due to cancer is particularly hard to replace. Understanding the genetic pathways that lead to the development of facial cartilage may help in future stem-cell therapies, where a patient's own skin cells could be transformed and used to repair the nose.

"When facial cartilage and bone is lost, from cancer or an accident, it has been difficult to replace," says Marianne Bronner, the Albert Billings Ruddock Professor of Biology at Caltech, and senior author of the Science report. "Our long term hope is that uncovering this gene circuit may be useful in reprogramming a patient's own stem cells to make facial cartilage."

The bones below our necks, referred to by scientists as the "long" bones, originate from a different source of tissue than the bones in our head. As embryos, we are born with a type of early tissue called the neural crest that forms along the entire body, from the head to the end of the spinal cord. Those neural crest cells which originate in the head, called cranial neural crest, differentiate into the cartilage and bone of our faces, including the jaws and skull. In contrast, the so-called trunk neural crest cells, forming below the neck, do not make cartilage or bone but instead turn into nerve cells and pigment cells elsewhere in our bodies. Bronner and her colleagues want to understand what genes regulate the development of cranial neural crest cells and enable them to make cartilage and bones in the head.

To this end, they divided the trunk and cranial neural crest cells of bird embryos into separate groups, and looked for differences in gene activity. Fifteen genes were initially identified as being turned on in only the cranial cells. The researchers chose six of these genes for further study. All six code for transcription factors—molecules that bind to DNA to turn on and off the expression of other genes. After studying how these factors interact with each other, the scientists focused on three, called Sox8, Tfap2b and Ets, that are part of the cranial neural crest circuit.

These three genes were then inserted into the bodies of developing bird embryos, in particular the trunk neural crest, using a technique called electroporation. In this method, electric current is applied to cells to open up pores through which molecules such as DNA may pass. Next, the researchers transplanted the altered trunk cells to the cranial region of the embryos. Five days later, the trunk cells were doing something entirely new: producing cartilage.

"Normally, these trunk cells will not make cartilage," says Bronner. "Introducing just three genes into these cells reprogrammed them to acquire the ability to do so."

Bronner said that she hopes other researchers will use this information for experiments in cell culture. By adding the new-found gene circuit, perhaps with other known factors, to skin cells in a petri dish it may be possible to turn them into cartilage-producing cells—a key next step in creating future therapies for facial bone and cartilage loss.

The first author of the Science paper, titled, "Reprogramming of avian neural crest axial identity and cell fate," is Marcos Simoes-Costa of Caltech. The research is funded by the National Institutes of Health and the Pew Fellows Program in Biomedical Sciences.

Home Page Title: 
Creating Facial Cartilage in the Lab
Contact: 
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 

Gravitational Waves Detected from Second Pair of Colliding Black Holes

The LIGO Scientific Collaboration and the Virgo collaboration identify a second gravitational wave event in the data from Advanced LIGO detectors

On December 26, 2015 at 03:38:53 UTC, scientists observed gravitational waves—ripples in the fabric of spacetime—for the second time.

The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA.

The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.

Gravitational waves carry information about their origins and about the nature of gravity that cannot otherwise be obtained, and physicists have concluded that these gravitational waves were produced during the final moments of the merger of two black holes—14 and 8 times the mass of the sun—to produce a single, more massive spinning black hole that is 21 times the mass of the sun.

"It is very significant that these black holes were much less massive than those observed in the first detection," says Gabriela Gonzalez, LIGO Scientific Collaboration (LSC) spokesperson and professor of physics and astronomy at Louisiana State University. "Because of their lighter masses compared to the first detection, they spent more time—about one second—in the sensitive band of the detectors. It is a promising start to mapping the populations of black holes in our universe."

During the merger, which occurred approximately 1.4 billion years ago, a quantity of energy roughly equivalent to the mass of the sun was converted into gravitational waves. The detected signal comes from the last 27 orbits of the black holes before their merger. Based on the arrival time of the signals—with the Livingston detector measuring the waves 1.1 milliseconds before the Hanford detector—the position of the source in the sky can be roughly determined.

"In the near future, Virgo, the European interferometer, will join a growing network of gravitational wave detectors, which work together with ground-based telescopes that follow-up on the signals," notes Fulvio Ricci, the Virgo Collaboration spokesperson, a physicist at Istituto Nazionale di Fisica Nucleare (INFN) and professor at Sapienza University of Rome. "The three interferometers together will permit a far better localization in the sky of the signals."

The first detection of gravitational waves, announced on February 11, 2016, confirmed a major prediction of Albert Einstein's 1915 general theory of relativity, and marked the beginning of the new field of gravitational-wave astronomy.

The second discovery "has truly put the 'O' for Observatory in LIGO," says Caltech's Albert Lazzarini, deputy director of the LIGO Laboratory. "With detections of two strong events in the four months of our first observing run, we can begin to make predictions about how often we might be hearing gravitational waves in the future. LIGO is bringing us a new way to observe some of the darkest yet most energetic events in our universe."

"We are starting to get a glimpse of the kind of new astrophysical information that can only come from gravitational wave detectors," says MIT's David Shoemaker, who led the Advanced LIGO detector construction program.

Both discoveries were made possible by the enhanced capabilities of Advanced LIGO, a major upgrade that increases the sensitivity of the instruments compared to the first generation LIGO detectors, enabling a large increase in the volume of the universe probed.

"With the advent of Advanced LIGO, we anticipated researchers would eventually succeed at detecting unexpected phenomena, but these two detections thus far have surpassed our expectations," says NSF Director France A. Córdova. "NSF's 40-year investment in this foundational research is already yielding new information about the nature of the dark universe."

Advanced LIGO's next data-taking run will begin this fall. By then, further improvements in detector sensitivity are expected to allow LIGO to reach as much as 1.5 to 2 times more of the volume of the universe. The Virgo detector is expected to join in the latter half of the upcoming observing run.

LIGO research is carried out by the LIGO Scientific Collaboration (LSC), a group of more than 1,000 scientists from universities around the United States and in 14 other countries. More than 90 universities and research institutes in the LSC develop detector technology and analyze data; approximately 250 students are strong contributing members of the collaboration. The LSC detector network includes the LIGO interferometers and the GEO600 detector.

Virgo research is carried out by the Virgo Collaboration, consisting of more than 250 physicists and engineers belonging to 19 different European research groups: 6 from Centre National de la Recherche Scientifique (CNRS) in France; 8 from the Istituto Nazionale di Fisica Nucleare (INFN) in Italy; 2 in The Netherlands with Nikhef; the MTA Wigner RCP in Hungary; the POLGRAW group in Poland and the European Gravitational Observatory (EGO), the laboratory hosting the Virgo detector near Pisa in Italy.

The NSF provides most of the financial support for Advanced LIGO. Funding organizations in Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council, STFC) and Australia (Australian Research Council) also have made significant commitments to the project.

Several of the key technologies that made Advanced LIGO so much more sensitive have been developed and tested by the German UK GEO collaboration. Significant computer resources have been contributed by the AEI Hannover Atlas Cluster, the LIGO Laboratory, Syracuse University, the ARCCA cluster at Cardiff University, the University of Wisconsin-Milwaukee, and the Open Science Grid. Several universities designed, built, and tested key components and techniques for Advanced LIGO: The Australian National University, the University of Adelaide, the University of Western Australia, the University of Florida, Stanford University, Columbia University in the City of New York, and Louisiana State University. The GEO team includes scientists at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI), Leibniz Universität Hannover, along with partners at the University of Glasgow, Cardiff University, the University of Birmingham, other universities in the United Kingdom and Germany, and the University of the Balearic Islands in Spain.

Home Page Title: 
Gravitational Waves Detected a Second Time
Contact: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 

Live Webcast: LIGO, Virgo Scientists to Discuss Continued Search for Gravitational Waves

The latest research in the effort to detect gravitational waves will be discussed in a press briefing at the 228th meeting of the American Astronomical Society in San Diego, California. The public can view the briefing during the live webcast, scheduled to begin at 10:15 am Pacific Daylight Time on Wednesday, June 15, 2016. The panelists for the briefing are Caltech's David Reitze, executive director of LIGO; Gabriela González, LIGO Scientific Collaboration spokesperson, from Louisiana State University; and Fulvio Ricci, Virgo spokesperson, from the University of Rome Sapienza and the Istituto Nazionale di Fisica Nucleare in Rome.

The first detection of gravitational waves, announced on February 11, 2016, confirmed a major prediction of Albert Einstein's 1915 general theory of relativity, and marked the beginning of the new field of gravitational-wave astronomy.

LIGO, a system of two identical detectors located in Livingston, Louisiana, and Hanford, Washington, was constructed to detect the tiny vibrations from passing gravitational waves, was conceived and built by Caltech and MIT with funding from the National Science Foundation and contributions from other U.S. and international partners.

Home Page Title: 
Live Webcast: Ligo, Virgo Scientists to Discuss Continued Search for Gravitational Waves
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 

Dietary Fiber and Microbes Change the Gel That Lines Our Gut

In the ongoing hustle and bustle of our intestines, where bacteria and food regularly intermingle, there is another substance that, to the surprise of researchers, has been found to rapidly change: the gel that lines the gut. A new Caltech study is the first to show how the structure of this gut gel, or mucus, can change in the presence of certain substances, such as bacteria and polymers—a class of long-chained molecules that includes dietary fiber.

The work, to be published online the week of June 13 in the Proceedings of the National Academy of Sciences, could lead to the development of new drugs or diets for intestinal conditions such as irritable bowel disease.

Our intestinal tracts are lined with a mucus gel that acts as a protective barrier between the insides of our bodies and the outside world. The gel lets in nutrients and largely blocks out bacteria, preventing infections. It also regulates how some drugs are delivered elsewhere in our bodies.

Researchers had previously studied how the gel can be damaged, for instance when bacteria feed on the gut's lining. The Caltech study is the first to look at the structure of the gel and how it morphs in the presence of other substances naturally found in the gut.

Performing their experiments in mice, the team tested the effects of polymers, which include dietary fiber as well as therapeutics such as medicines for constipation. The researchers fed some mice a diet rich in polymers and others (the controls) a polymer-free diet. Using a technique called confocal reflectance microscopy they measured the thickness of the gut gel and the degree to which the gel was compressed as a result of the consumed polymers. Mice given a high-polymer diet, they found, had a more compressed gel layer.

"The gel is like a sponge with holes that let material through," says the paper's lead author, Sujit Datta, a postdoctoral scholar in the laboratory of Rustem Ismagilov, Ethel Wilson Bowles and Robert Bowles Professor of Chemistry and Chemical Engineering. "We are seeing that polymers, including dietary fiber, can compress the gel, potentially making the holes smaller, and we think that this might offer protective benefits," Datta adds.

In addition, the researchers applied different kinds of polymers—including dietary fibers like pectin, found in apples—directly to the gel lining to test its response. All of the polymers tested compressed the gel layer.

"It's too early to draw any conclusions, but it may be that eating an apple a day will affect the shape of the lining in your gut," says Asher Preska Steinberg, a Caltech graduate student and coauthor of the study.

The researchers also found that dietary fiber and gut bacteria—which are part of a community of microorganisms collectively known as gut microbiota—can work together to influence how the gut gel changes shape. They performed the same polymer/fiber experiments in germ-free mice, which are mice carefully raised to not have any bacteria in their gut. The results showed that the polymers compressed the gut gels of these germ-free mice to a greater degree. This implies that species of bacteria in our gut that are known to break down polymers can weaken the compressing effect.

"We previously thought of the gel as a static structure, so it was unexpected to find an interplay between diet and gut microbiota that rapidly and dynamically changes the biological structures that protect a host," says Ismagilov.

Both dietary fiber and certain gut microbes have been linked to good health. Fiber has been shown to lower cholesterol and regulate blood sugar levels—factors in heart disease and diabetes, respectively. Meanwhile, some bacteria, including the good "probiotics," can help treat digestive disorders and may even play a beneficial role in mental health. For instance, a separate Caltech-led study found that probiotics can alleviate autism-like behaviors in mice—a finding that could potentially lead to new therapies for the disorder in humans.

The entire collection of bacteria in our gut can include 1,000 different species or more and weigh a total of three pounds. Exactly how these microscopic organisms influence our health, for good and bad, is an area of active research with many unanswered questions. The White House recently announced the National Microbiome Initiative, with federal funding worth $121 million, to investigate the mysteries of microbes not only living in our bodies but all over the planet. In addition, more than 100 nonfederal agencies have pledged money and support toward researching microbial communities.

"Our study gives biologists and scientists studying diseases of the gut something else to think about," says Datta. "Now they can take the structure of the gut mucus, and how it responds to its environment, into account."

This research was funded by the Defense Advanced Research Projects Agency (DARPA) and National Science Foundation.

Home Page Title: 
Microbes & Dietary Fiber Change the Gut Lining
Contact: 
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
The study is the first to look at the structure of the gut's mucus gel lining and how it morphs in the presence of other substances naturally found in the gut.

Natural Quasicrystals May Be the Result of Collisions Between Objects in the Asteroid Belt

Naturally formed quasicrystals—solids with orderly atomic arrangements with symmetries impossible for conventional crystals—are among the rarest structures on Earth. Only two have ever been found.

A team led by Paul Asimow (MS '93, PhD '97), professor of geology and geochemistry at Caltech, may have uncovered one of the reasons for that scarcity, demonstrating in laboratory experiments that quasicrystals could arise from collisions between rocky bodies in the asteroid belt with unusual chemical compositions.

A paper on their findings was published on June 13 in the advance online edition of the Proceedings of the National Academy of Sciences.

At an atomic level, crystals are both ordered and periodic, meaning that they have a well-defined geometric structure composed of atomic clusters that repeat like building blocks with equal spacings along the repeat directions. Over one hundred years ago, it was shown the crystal can only exhibit one of four types of rotational symmetry: two-fold, three-fold, four-fold, or six-fold.

The number refers to how many times an object will look exactly the same within a full 360-degree rotation about an axis. For example, an object with two-fold symmetry appears the same twice, or every 180 degrees; an object with three-fold symmetry appears the same three times, or every 120 degrees; and an object with four-fold symmetry appears the same four times, or every 90 degrees.

Prior to 1984, it was believed that it would be impossible for a solid to grow with any other type of symmetry, and no examples of materials with other symmetries had ever been discovered in nature or grown in a lab. In that year, however, Princeton physicist Paul Steinhardt (BS '74) and his student Dov Levine (now at the Technion – Israel Institute of Technology) theorized a set of conditions under which other types of symmetry could potentially exist and Dan Shechtman of the Israel Institute of Technology and collaborators published a paper announcing the synthesis in the laboratory of a material with a five-fold rotational symmetry.

The atomic arrangements of these materials were ordered so that, like crystals, X-rays and electrons passing through them form a pattern of sharp spots. However, whereas the spots obtained from a crystal are equally spaced and only form patterns with symmetries from the restricted list, the spots obtained from a quasicrystal form a fractal snowflake pattern that include forbidden symmetries, such as five-fold. Steinhardt and Levine dubbed them "quasiperiodic crystals" or "quasicrystals" for short.

Over the next few decades, researchers figured out how to manufacture more than 100 different varieties of quasicrystals by melting and homogenizing certain elements and then cooling them at very specific rates in the lab. Still, though, no naturally existing quasicrystals were known. Indeed, researchers suspected their formation would be impossible. That is because most lab-grown quasicrystals were metastable, meaning that the same combination of elements could arrange themselves into a crystalline structure using less energy.

Everything changed in the late 2000s, when Steinhardt and colleague Luca Bindi from the Museum of Natural History at the University of Florence (currently in the Faculty of the Department of Earth Sciences of the same University) found a tiny grain of an aluminum, copper, and iron mineral that exhibited five-fold symmetry. The grain came from a small sample of the Khatyrka meteorite, an extraterrestrial object known only from a few pieces found in Russia's Koryak Mountains. Steinhardt and his collaborators found a second natural quasicrystal from the same meteorite in 2015, confirming that the natural existence of quasicrystals was possible, just very rare.

A microscopic analysis of the meteorite indicated that it had undergone a major shock at some point in its lifetime before crashing to Earth – likely from a collision with another rocky body in space. Such collisions are common in the asteroid belt and release high amounts of energy.

Asimow and colleagues hypothesized that the energy released by the shock could have caused the quasicrystal's formation by triggering a rapid cycle of compression, heating, decompression, and cooling.

To test the hypothesis, Asimow simulated the collision between two asteroids in his lab. He took thin slices of minerals found in the Khatyrka meteorite and sandwiched them together in a sample case that resembles a steel hockey puck. He then screwed the "puck" to the muzzle of a four-meter-long, 20-mm-bore single-stage propellant gun, and blasted it with a projectile at nearly one kilometer per second, about equal to the speed of the fastest rifle-fired bullets.

It is important to note that those minerals included a sample of a metallic copper-aluminum alloy, which has only been found in nature in the Khatyrka meteorite.

After the sample was shocked with the propellant gun, it was sawed open, polished, and examined. The impact smashed the sandwiched elements together and, in several spots, created microscopic quasicrystals, according to X-ray and electron diffraction studies at Caltech, Princeton, and Florence.

Armed with this experimental evidence, Asimow says he is confident that shocks are the source of naturally formed quasicrystals. "We know that the Khatyrka meteorite was shocked. And now we know that when you shock the starting materials that were available in that meteorite, you get a quasicrystal."

Sarah Stewart (PhD '02)—a planetary collision expert from the University of California, Davis, and reviewer of the PNAS paper—admits she was surprised by the findings. "If you had called me before the study and asked if this would work I would have said 'no way.' The astounding thing is that they did it so easily," she says. "Nature is crazy."

Asimow acknowledges that the experiments leave many questions unanswered. For example, it is unclear at what point the quasicrystal formed during the shock's pressure and temperature cycle. A bigger mystery, Asimow says, is the origin of the copper-aluminum alloy in the meteorite, which has never been seen elsewhere in nature.

Next, Asimow plans to shock various combinations of minerals to see what key ingredients are necessary for natural quasicrystal formation.

These results are published in a paper titled "Shock synthesis of quasicrystals with implications for their origin in asteroid collisions." In addition to Asimow, Steinhardt, and Bindi, other coauthors on the paper are Chi Ma, director of analytical facilities in the Geological and Planetary Sciences division at Caltech; Lincoln Hollister (PhD '66) and Chaney Lin from Princeton University; and Oliver Tschauner from the University of Nevada, Las Vegas. Their work was supported by the National Science Foundation (NSF), the University of Florence, and the NSF-Materials Research Science & Engineering Centers Program through New York University and the Princeton Center for Complex Materials.

Images: 
Home Page Title: 
Experiment Points to Origin of Quasicrystals
Listing Title: 
Natural Quasicrystals May Be the Result of Collisions Between Objects in the Asteroid Belt
Contact: 
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 

A Feeling Touch

Using funding from the BRAIN Initiative, Caltech biologists are developing neuroprosthetics to bring tactile sensations to the users of robotic arms.

Caltech biologist Richard Andersen is working to incorporate a sense of touch into the neural prosthetics he has been helping develop for years—devices implanted in the brain that allow a paralyzed patient to manipulate a robotic arm.

Andersen and colleagues first reported success of their original implant in early 2015. The team, led by Andersen, placed their prosthesis in the posterior parietal cortex, an area that controls the intent to move rather than controlling movement directly as previous experiments had done. This allowed Erik Sorto, a 35-year-old man who has been paralyzed from the neck down for more than 10 years, to use a robotic arm placed next to his body to perform a fluid hand-shaking gesture, play rock-paper-scissors, and even grasp a bottle of beer and bring it to his mouth for a sip—something he had long dreamed of doing.

This research on how to make a robotic arm move resulted in a 2015 National Science Foundation grant to Andersen from President Obama's Brain Research through Advancing Innovative Neurotechnology—or BRAIN—Initiative, as well as seed money from the California Blueprint for Research to Advance Innovations in Neuroscience (Cal-BRAIN) program, the California complement to the federal initiative, which gave out its first-ever monetary awards last year to a group of researchers that included Andersen.

Andersen is now using those Cal-BRAIN funds—designed to bring together interdisciplinary teams of scientists and engineers from diverse fields for fundamental brain research—to take his team's work to the next level. His hope is to enable people using robotic arms to literally regain their sense of touch—their ability to feel an object in their "hands."

For more on Andersen's work, read A Feeling Touch on E&S+

 

Writer: 
Katie Neith
Home Page Title: 
A Feeling Touch
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
Caltech biologists are developing neuroprosthetics to bring tactile sensations to the users of robotic arms.

Pages