Quintessentially Caltech

Teaser Image: 
Frontpage Title: 
Quintessentially Caltech
Slideshow: 

Caltech: A Personal Perspective

Ahmed Zewail, Nobel Laureate
Linus Pauling Professor of Chemistry and Professor of Physics, Caltech

Zewail provided an overview of his journey from a young child in Egypt to Caltech Nobel laureate. On the day he won the 1999 Nobel Prize in Physics, he recalled, Caltech president David Baltimore came to Zewail's house, but he refused to open the door. "We thought he was paparazzi," Zewail admitted.

Credit: Chris Sabanpan

The End of Disease?

Roger Kornberg, Nobel Laureate
Mrs. George A. Winzer Professor in Medicine, Stanford, School of Medicine

As advanced as we think we are, Kornberg said, scientists today understand less than 1 percent of human biology. Attracting more young people to the field of medical research is therefore critical. "Young scientists are the most likely to discover something," he said. "And numbers matter."

Credit: Chris Sabanpan

The Future of Medicine

David Baltimore, Nobel Laureate
Caltech President Emeritus
Robert Andrews Millikan Professor of Biology, Caltech

The human body can survive a maximum of roughly 120 years, according to Baltimore. He predicted a future in which scientists work to push that envelope, using gene editing "to liberate us from the process of aging" and "to perfect the human body, whatever that means."

Credit: Chris Sabanpan

The Future of Quantum Physics

H. Jeff Kimble, Member, National Academy of Sciences
William L. Valentine Professor and Professor of Physics, Caltech

Kimble's lecture about the future of quantum physics included predictions about quantum computing, quantum simulation, and quantum metrology. "Science helps hold us together and appreciate our sameness rather than our differences," he said.

 

Credit: Chris Sabanpan

Time, Einstein, and the Coolest Stuff in the Universe

William Phillips, Nobel Laureate
Physicist, National Institute of Standards and Technology
Distinguished University Professor, University of Maryland

In a hands-on demonstration, Phillips put on a pair of lab goggles and dunked a variety of items—a rose, a racquetball, several inflated balloons—into a vat of liquid nitrogen to help demonstrate his overall point: that we can create super-accurate atomic clocks by cooling down atoms to astoundingly low temperatures.

Credit: Chris Sabanpan

Inequality and World Economics

A. Michael Spence, Nobel Laureate
Philip H. Knight Professor and Dean, Emeritus
Stanford University Graduate School of Business

Spence discussed a number of global economic trends—including the decline in middle-class jobs and the rise of job-eliminating technologies—in a lecture that considered the disparities between rich and poor. "I'm a little worried about what's going on in the global economy right now and I tend to be an optimist," he said.

Credit: Chris Sabanpan

The Future of Space Exploration

Charles Elachi, NASA Outstanding Leadership Medal Recipient
Caltech Vice President
Director, Jet Propulsion Laboratory

Elachi said he believes we will establish a space station on Mars and that humans will begin visiting the planet by 2030. But, he noted, "It's important that we take care of our own planet. It's the only thing we have, at least for now."

 

Body: 

How best to recognize Caltech's own Ahmed Zewail, the Linus Pauling Professor of Chemistry and professor of physics, and director of the Physical Biology Center for Ultrafast Science and Technology, who has served on Caltech's faculty for 40 years? President Thomas F. Rosenbaum had the answer: what he would later call a "quintessentially Caltech conference."

And so, on Friday, February 26, more than 1,000 people gathered to hear exceptional researchers, including 5 Nobel Laureates, from across disciplines consider our future as part of the full-day "Science and Society" conference that honored the career of Zewail, whom Rosenbaum called "a wizard of scientific innovation."

The speakers lectured on a broad spectrum of topics, ranging from space travel to global economic inequality to what happens when five inflated balloons are stuffed into a vat of liquid nitrogen. Their talks were moderated by Nathan Gardels, editor in chief of The WorldPost, and Peter Dervan, the Bren Professor of Chemistry, who noted while introducing Zewail that they have been close friends ever since their early days starting as assistant professors together at Caltech.

"What an extraordinary day," Rosenbaum said at the conclusion of the event, held in Beckman Auditorium. "It's unusual to find a series of talks at this incredibly high level of excellence—intellectually deep and pedagogically engaging."

As many of the speakers pointed out, Zewail's list of accomplishments is staggering. He has authored some 600 articles and 16 books and was sole recipient of the 1999 Nobel Prize for his pioneering work in femtochemistry. In the post-Nobel era, he developed a new field dubbed four-dimensional electron microscopy. He has been active in global affairs, serving as the first U.S. Science Envoy to the Middle East and helping establish the Zewail City of Science and Technology in Cairo, which he hopes to turn into "the Caltech of Egypt."

"Ahmed is a very special kind of scientist," said Fiona Harrison, chair of Caltech's Division of Physics, Mathematics and Astronomy, during the conference's introductory remarks. She noted the "incredible breadth of his research" and cited a colleague's observation that "Ahmed is someone who never has average goals."

Jackie Barton, chair of Caltech's Division of Chemistry and Chemical Engineering, praised Caltech for taking a chance on Zewail four decades ago, when he was a young scientist. "He had this vision," she said. "The vision was to watch the dynamics of chemical reactions, to watch reactions happening on a faster and faster time scale, indeed to watch the making and breaking of chemical bonds."

She added: "He has this intuitive sense of the dynamical motions of atoms and molecules, their coherence, or lack thereof, as the case may be. And then he has this extraordinary attention to every detail, so that he's able to meld together theory and experiment and understand that dance, that choreography of atoms and molecules as they carry out a reaction."

To further honor Zewail, Caltech presented him with a rare book of Benjamin Franklin's speeches and scientific research—on lightning rods and the aurora borealis, among other phenomena—that is signed by Rosenbaum and all of Caltech's former presidents. Caltech Provost Ed Stolper noted that it is the only book authored by Franklin that was published during his lifetime.

As Stolper noted in his introductory remarks, the gift is a fitting one for Zewail, who has come to embody the ideal of Caltech, a place "where scientists and engineers are limited only by their imagination." He added Ahmed is one of the few scientists that, like Benjamin Franklin and Linus Pauling, not only excelled in science but has made a broader impact on society through his writings and actions.

Written by Alex Roth

Exclude from News Hub: 
No

Students and Postdocs Helped Make Sure LIGO Was Listening

In the months leading up to the first detection of gravitational waves by LIGO (the Laser Interferometer Gravitational-wave Observatory), announced on February 11, Caltech postdoctoral scholar Sheila Dwyer and graduate student Evan Hall spent most of their waking hours in the control room at the LIGO Hanford Observatory in the remote plains of southern Washington. The observatory is one in a pair of giant interferometers built and operated by the LIGO Scientific Collaboration with funding from the National Science Foundation to search for the waves—ripples in the fabric of space-time.

Looking something like NASA's mission control rooms, where space missions are monitored, the LIGO control room has no windows. Instead, there are many monitors displaying camera feeds and plots that provide information about how the interferometer is working. To the uninitiated, the data feeds might be unintelligible. But, Dwyer says, "If you are used to spending time in the control room, you can instantly get an idea of how the interferometer is doing the moment you step into the room."

"Hours and hours go by where they're sitting at their computer consoles, not saying a word," says Rana Adhikari, Caltech professor of physics and Dwyer and Hall's advisor. " If you don't know what's going on, you might think that nothing is happening. But what they're doing is adjusting slightly the control algorithms which make the whole thing run. "

Indeed, Dwyer and Hall are part of a relatively small team whose job it is to make sure that the interferometer in Hanford is up and running at its best. There is a similar team in place at the second LIGO observatory in Livingston, Louisiana. A number of Caltech graduate students and postdocs have played pivotal roles in getting the two interferometers operating with enough sensitivity to detect the tiny signal of gravitational waves that came through at 5:51 a.m. EDT on Monday, September 14, 2015.

"It might be hard for people to understand because LIGO is such a big project, but everything actually depends on the grad students and postdocs, their attitudes, and what's going on with them," says Adhikari. "If they're really excited and interested, and they're really good, it's surprising how quickly the whole project moves."

Why? Because the students live and breathe the project, and they become experts on the instrument. "They are there day and night, during the week and on weekends," says Adhikari. "After several months of living like that, they get to a level of expertise that can't be matched." (He should know. He himself was once a graduate student working on LIGO.)

And the project requires that degree of dedication and expertise. Consider what LIGO does: It tries to detect the tiny effect that gravitational waves, often produced trillions upon trillions of miles away, have on the earth as they race by at the speed of light. In the case of LIGO's first detection, the ripples were produced 1.3 billion years ago by a type of event that is among the universe's most energetic—the merger of two black holes. Still, those waves squeezed and stretched space and time only ever so slightly as they passed through the earth. In fact, in order to detect the gravitational waves, LIGO had to be able to detect a change in distance of about one-thousandth the diameter of a proton (10-18 meter).  

The twin LIGO interferometers are based on a fairly simple concept: laser light fired down two identical 4-kilometer lengths (situated in an "L" shape) toward identical mirrors should bounce back to their point of origin at the same time; a difference in the two arrival times could be caused by gravitational waves compressing space-time a tiny bit along one length while stretching it a similar amount along the other.

Those mirrors, and the entire apparatus within which they are contained, sit on the ever-moving earth. For the LIGO detectors to be able to pick out the motion associated with incoming gravitational waves, the interferometer must first be isolated from all other possible sources of movement—noise which could otherwise overwhelm the signal. Everything from seismic activity and wind, to trucks on the road and the hum of lights, to the minuscule quantum vibrations present in all objects can potentially jiggle the mirrors.

The current generation of LIGO detectors, installed in what is known as Advanced LIGO, marks a technical upgrade to Initial LIGO, which completed its observations in 2007, and a modified intermediate called Enhanced LIGO, which ran until 2010.  Advanced LIGO is about four times more sensitive to gravitational waves signals than Enhanced LIGO and has a sophisticated system in place to silence extraneous noise. In addition to operating in an elaborate vacuum (as LIGO always has) the system incorporates layer upon layer of noise-canceling technology based on the same underlying concept behind noise-canceling headphones. Measurements from vibration sensors on a hanging platform are fed to a computer that then tells an actuator how much to compensate, or push, in order to cancel out the noise. Another platform with slightly better sensors is suspended from the first and performs essentially the same trick. This is repeated three times, with each platform removing from 90 to 99 percent of the remaining noise so that in the end, the system currently removes all but 0.1 percent.  In addition, the mirrors are held steady by a multiple pendulum system that also helps reflect movement.

"It's a huge, huge engineering effort to make that work," says Adhikari. "Each component is a crazy system of wires and cables, and each platform has to be isolated from as much movement as possible. You need multiple, multiple sensors on each one doing feedback."

At the Livingston observatory, Denis Martynov (PhD '15), a former graduate student from Adhikari's group, spent two years tweaking the system—stabilizing the laser, aligning the mirrors precisely relative to each other, and helping to identify and then eliminate different types of noise in the instrument (something he calls "noise hunting"). For example, he and his colleagues discovered that electrostatic charge builds up on the surfaces of the interferometer's mirrors, allowing the electric field present in the instrument to push the mirrors slightly. He also worked on many of the noise-canceling techniques to improve the instrument's sensitivity.

Hall transferred many of those techniques to the Hanford facility. Although everything about the two interferometers—from their mirrors, to their suspensions, to their placement within the vacuum system—was designed to be identical, there were minor differences between the two instruments. "In some cases, the mirror position might differ by a few millimeters, or the curvature of a mirror may be slightly different," explains Hall. "Little things like that are enough to make the two detectors behave very differently." Hall and his colleagues had to figure out clever engineering tricks to make the two instruments behave like true twins.

Thanks to efforts like these, Advanced LIGO is a trillion times quieter than the motion of the earth. But its complexity also means that there are more things that can break, get out of alignment, or not work together properly.

"There are a lot of tweaks and tune-ups that have to be carried out in order to achieve good noise performance," says Hall. "However, it's not always obvious what these tweaks are. Often they can be things like a faulty piece of electronics, or a mirror that's not properly secured to an optical table. Those sorts of things take a lot of time to find, even if the fix is simple."

At 1:18 a.m. on Sunday, September 14—just a day before both LIGO facilities made their first detection—seismic waves from a series of earthquakes in Mexico affected the Hanford site. Though well over 1,000 miles away, the quakes left Dwyer and her colleagues with quite a bit of work to do. To protect the equipment, the isolation systems turn off during large seismic events, but the delicate instruments can still be disturbed. After the ground motion settled, the team began isolating all the seismic isolation platforms again, but had difficulty with one platform. While trying to recover from the earthquake and realign the optics, Dwyer and the team also found a glitch in the software that runs the system; it had been causing one of the optics to move when it was not supposed to. In all, it took the team in Hanford about 18 hours to get the instrument back up and running.

Dwyer came in that Sunday hoping to work on a pet project she hoped to finish before the start of the official observing run. "But because of the earthquake, we spent the day fixing more mundane problems, just trying to get the interferometer functional," she says.

 It is a good thing they did because the following night, both LIGO facilities were ready to hear their first gravitational waves.

Writer: 
Kimm Fesenmaier
Home Page Title: 
The Importance of Young LIGO Researchers
Listing Title: 
Students and Postdocs Helped Make Sure LIGO Was Listening
Writer: 
Exclude from News Hub: 
No
Short Title: 
The Importance of LIGO's Young Researchers
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
Caltech graduate students and postdocs were crucial in getting the LIGO interferometers operating with enough sensitivity to detect gravitational waves.

The Thunder of Gravity in the Cosmos

Watson Lecture Preview

In 1916, Albert Einstein predicted the existence of gravitational waves—vibrations in spacetime that travel at the speed of light and are produced by the most cataclysmic events in the universe, such as the collision of black holes. Over the past 45 years, scientists have been developing ever-more-sensitive detectors, which are now capable of measuring these distortions from hundreds of millions of light years away. On September 14th, two of those detectors—as part of the Laser Interferometer Gravitational-wave Observatory, or LIGO—picked up the gravitational vibrations of a pair of massive black holes from a billion years ago.

On Wednesday, March 9, at 8 p.m. in Beckman Auditorium, Caltech professor of physics Rana Adhikari will describe how our understanding of the quantum physics of the very, very small has allowed us to explore the gravitational physics of the very, very large. Admission is free.

What do you do?

I am an experimental physicist. My overarching obsession is to use experiments to reveal the true nature of the universe.

We have been learning about the universe through precision experiments in the laboratory and by pushing the limits of astronomical instruments for many years. The recent discovery of gravitational waves from a binary black hole merger allows us to observe the warping of spacetime. This is a chance for us to use quantum physics to extend our knowledge of Einsteinian gravity.

Why is this important?

Our knowledge of how the universe really works comes to us when we as a people make a bold step by measuring something about nature much better than ever before. The upgraded LIGO detectors have radically expanded our view of the universe. For the first time, humanity is able to receive signals from across the universe made entirely by gravity. The dark side of the universe is being revealed for the first time.

How did you get into this line of work?

I've had great teachers and mentors! Doing laboratory work in physics and chemistry has always been the most fun thing to do and I was amazed that it is possible to do that for a living. Where else is 'unlocking the secrets of the universe' part of the job description?

Home Page Title: 
The Thunder of Gravity in the Cosmos
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community
Exclude from Home Page: 
Home Page Summary: 
How our understanding of the quantum physics of the very, very small has allowed us to explore the gravitational physics of the very, very large.

JPL News: Versatile Instrument to Scout for Kuiper Belt Objects

At the Palomar Observatory near San Diego, astronomers are busy tinkering with a high-tech instrument that could discover a variety of objects both far from Earth and closer to home.

The Caltech HIgh-speed Multi-color camERA (CHIMERA) system is looking for objects in the Kuiper Belt, the band of icy bodies beyond the orbit of Neptune that includes Pluto. It can also detect near-Earth asteroids and exotic forms of stars. Scientists at Caltech and NASA's Jet Propulsion Laboratory are collaborating on this instrument.

"The Kuiper Belt is a pristine remnant of the formation of our solar system," said Gregg Hallinan, CHIMERA principal investigator at Caltech. "By studying it, we can learn a large amount about how our solar system formed and how it's continuing to evolve."

"Each of CHIMERA's cameras will be taking 40 frames per second, allowing us to measure the distinct diffraction pattern in the wavelengths of light to which they are sensitive," said Leon Harding, CHIMERA instrument scientist at JPL. "This high-speed imaging technique will enable us to find new Kuiper Belt objects far less massive in size than any other ground-based survey to date."

Hallinan's CHIMERA team at Caltech and JPL published a paper led by Harding describing the instrument this week in the Monthly Notices of the Royal Astronomical Society.

Read the full story from JPL News

Home Page Title: 
JPL News: Scouting for Kuiper Belt Objects
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
The CHIMERA system is looking for objects in the Kuiper Belt, the band of icy bodies beyond the orbit of Neptune that includes Pluto.

LIGO Panel Peers into New Window on the Universe

On September 14, 2015, the twin Laser Interferometry Gravitational-wave Observatory (LIGO) detectors sensed the infinitesimal vibrations of a black hole merger that took place over one billion years ago. This discovery, announced worldwide on February 11, 2016, has opened a new window on the universe. On February 23, Caltech held a public event to discuss the discovery of gravitational waves and what it will mean for our ongoing exploration and understanding of the universe.

A panel of scientists from Caltech and LIGO—moderated by Fiona Harrison, the Benjamin M. Rosen Professor of Physics and the Kent and Joyce Kresa Leadership Chair of the Division of Physics, Mathematics and Astronomy—gave a series of short talks describing their experiences with the project.

Opening remarks were delivered by President Thomas Rosenbaum, who described the discovery of gravitational waves as a "connecting of heaven and earth," likening it to the 18th-century image of lightning striking a key on a kite string. He commended the extraordinary four-decade-long vision of the project and said that it demonstrated how the combination of people and technology could change the world.

According to panelist Kip Thorne, the Richard P. Feynman Professor of Theoretical Physics, Emeritus, who has been working on the search for gravitational waves since the 1960s, and who detailed for the audience the setup of the identical detectors (located in Hanford, Washington, and Livingston, Louisiana), "Caltech's support for this project has never faltered since the beginning," he said. "It's very impressive."

"This is the biggest project the National Science Foundation has ever taken on," noted Barry Barish, the Ronald and Maxine Linde Professor of Physics, Emeritus, who described the history of building the detectors and the plans to improve their sensitivities. The NSF, he said, "never wavered, even in this high-risk endeavor. What we have just done in detecting gravitational waves is not the end of the story."

In their talks, Professor of Physics Rana Adhikari, and Anamaria Effler (BS '06), a postdoctoral scholar at the LIGO Livingston Observatory, described the painstaking effort needed to achieve and maintain the sensitivities of the LIGO detectors—which, after the Advanced LIGO technical upgrade, became the most precise measuring instrument ever constructed. Adhikari discussed the steps to limit Earth's own gravitational noise, the material science behind the superreflective mirrors used in the detectors, and the "squeezed-light system" used to minimize quantum-mechanical noise. Effler talked about the challenge of reducing environmental noise—from earthquakes, oceanic storms, planes, lightning storms, and even air-conditioning units. "Detecting a gravitational wave is like trying to hear someone at the back of a room scratch their nose, while everyone else in the room is screaming," she said.

Stan Whitcomb, LIGO chief scientist, described plans to add more detectors around the globe—including a LIGO detector in India—enabling scientists to more accurately locate the sources of gravitational waves. Whitcomb also expressed the need for accurate predictions of the gravitational-wave signals that would be produced by other cosmic phenomena—such as the mergers of neutron stars, which are extremely dense stars—in order to recognize them when they happen.

Mansi Kasliwal, an assistant professor of astronomy, described future efforts to characterize such events that produce gravitational waves. "There should be an immense flash of light, when these events occur. We use telescopes around the world to look at the sky for these flashes, and narrow down which one could have produced the gravitational waves," said Kasliwal, whose group has already successfully identified sources of gamma-ray bursts with this method.

Several of the panelists described their reactions shortly after the September 14 detection.

Mike Landry, the lead scientist at the LIGO Hanford Observatory, described how he felt upon coming into the lab the morning of the detection, and his surprise upon learning that the signal was not a test. "Often we do tests on our detectors, called blind injections, where we simulate a gravitational-wave event," he said. "I raced into the lab and asked if we were in a blind injection phase—and to my everlasting amazement, I was told no."

"I don't know if you know the feeling," said panelist Alan Weinstein, professor of physics. "You spend 15 years working on something and then suddenly there it is staring at you in the face." (Adhikari noted that it took "easily a month" before he was convinced the detection was real.)

Weinstein, who described gravitational waves as the sound of the vibrations of spacetime itself, noted that LIGO had ended the "silence" of astronomy. "It's going to be a very loud future," agreed Whitcomb.

Home Page Title: 
LIGO Panel - Our New Window on the Universe
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community
Exclude from Home Page: 
Home Page Summary: 
Scientists reflect on the history, the detection, the science, and the future of the field of gravitational wave astronomy.

Caltech Names Six Distinguished Alumni

Caltech has announced that Eric Betzig (BS '83), Janet C. Campagna (MS '85), Neil Gehrels (PhD '82), Carl V. Larson (BS '52), Thomas J. "Tim" Litle IV (BS '62), and Ellen D. Williams (PhD '82) are this year's recipients of the Distinguished Alumni Award.

First presented in 1966, the award is the highest honor the Institute bestows upon its graduates. It is awarded in recognition of a particular achievement of noteworthy value, a series of such achievements, or a career of noteworthy accomplishment. Presentation of the awards will be given on Saturday, May 21, 2016, as part of Caltech's Seminar Day.

The 2016 Distinguished Alumni Award recipients are

Eric Betzig (BS '83, Physics)

Physicist; Group Leader, Janelia Research Campus, Howard Hughes Medical Institute

Betzig is being recognized for his groundbreaking contributions to microscopy. He pioneered a method known as single-molecule microscopy, or "nanoscopy," which allows cellular structures at the nanoscale to be observed using optical microscopy. For the work, he shared the Nobel Prize in Chemistry in 2014.

Janet C. Campagna (MS '85, Social Science)

CEO, QS Investors

Campagna is being recognized for her contributions to quantitative investment and for her leadership in the financial industry. Campagna is the founder of QS Investors, LLC, a leading customized solutions and global quantitative equities provider. She is responsible for all business, strategic, and investment decisions within QS Investors. 

Neil Gehrels (PhD '82, Physics)

Chief of the Astroparticle Physics Laboratory, NASA's Goddard Space Flight Center

Gehrels is being recognized for his scientific leadership in the study of gamma ray bursts as well as for his significant contributions to high-energy astrophysics, infrared astronomy, and instrument development.

Carl V. Larson (BS '52, Mechanical Engineering)

Larson is being recognized for his accomplished career in the electronics industry. Over the course of three decades, Larson has held numerous and diverse leadership roles in fields ranging from engineering to marketing. He is also being celebrated for his sustained commitment to the research, students, and alumni of Caltech.

Thomas J. "Tim" Litle IV  (BS '62, Engineering and Applied Science)

Founder and Chairman, Litle & Co.

Litle is being recognized for his revolutionary contributions to commerce. Through innovations such as the presorted mail program he developed for the U.S. Postal Service and the three-digit security codes on credit cards, Litle has made global business more efficient and secure.

Ellen D. Williams (PhD '82, Chemistry)

Director, Advanced Research Projects Agency-Energy (ARPA-E)

Williams is being recognized for her sustained record of innovation and achievement in the area of structural surface physics. She founded the Materials Research Science and Engineering Center at the University of Maryland and was the chief scientist for BP. She now serves as director of the Advanced Research Project Agency (ARPA-E) in the U.S. Department of Energy.

Home Page Title: 
Caltech Names Six Distinguished Alumni
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community
Exclude from Home Page: 
Home Page Summary: 
The awardees range from the class of 1952 to the class of 1983, across a wide range of divisions.

Caltech Asteroid Hunter Gives TED Talk

Caltech staff scientist Carrie Nugent, who discovers and characterizes asteroids utilizing data from the NASA NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) program, presented her research as one of the selected speakers at the 2016 TED Conference this week in Vancouver, British Columbia. The semiannual conference showcases ideas representing a broad range of disciplines, from science to literature to philosophy.

"It's very exciting," says Nugent, who works in the Infrared Processing and Analysis Center. "NEOWISE is funded by taxpayer money, and it's so important that people understand what their money is doing. With a TED talk, I get to reach a huge and unique audience."

NEOWISE is an infrared telescope that takes photos of space every 11 seconds. Originally designed to look beyond the solar system, it is now in an extended-mission phase in which it is searching for and characterizing asteroids within our solar system. Because asteroids are remnants from the formation of the early solar system, the data gathered by NEOWISE may provide insights into the conditions and chemistry of the protoplanetary environment.

One major goal of NEOWISE is to determine the size of asteroids, notes Nugent. "It seems like such a basic thing to determine, but really, only one in five asteroids has a measured size," she says. "If we are just looking at the light reflected from an asteroid, then it could either be very small and very shiny, or very large and very dim—the light reflected would be the same. But by using NEOWISE, we can detect the amount of heat emitted by an object, which gives you a sense of its size."

Nugent, who has been working with asteroids since graduate school, says there is still much to learn about these small celestial bodies.

"Every planet has been visited by a probe at least once, but we haven't even discovered most asteroids," she says. "It is literally uncharted territory. By characterizing their orbits and measuring their sizes, we are building an archive that will last."

Discovering asteroids comes with perks—like getting to name them. Some of Nugent's discoveries include 284996 Rosaparks, named for civil rights activist Rosa Parks, and 241528 Tubman, named for abolitionist Harriet Tubman.

The TED conference was not Nugent's first experience with public outreach—in her spare time, she runs a podcast called Spacepod, in which she interviews scientists and engineers, including many at Caltech and JPL, about their research.

The 2016 TED conference was focused on "the greatest dreams we are capable of dreaming," and was held February 15–19.

Home Page Title: 
Caltech Asteroid Hunter Gives TED Talk
Listing Title: 
Caltech Asteroid Hunter Gives TED Talk
Writer: 
Exclude from News Hub: 
No
Short Title: 
Caltech Asteroid Hunter Gives TED Talk
News Type: 
In Our Community
Exclude from Home Page: 
Home Page Summary: 
Carrie Nugent spoke at the 2016 TED conference about her work discovering, naming, and characterizing asteroids.

LIGO-India Gets Green Light

Following this month's announcement of the first observation of gravitational waves arriving at the earth from a cataclysmic event in the distant universe, the Indian Cabinet, chaired by Prime Minister Shri Narendra Modi, has granted in-principle approval to the Laser Interferometer Gravitational-wave Observatory in India (LIGO-India) Project. The project will build an Advanced LIGO Observatory in India, a move that will significantly improve the ability of scientists to pinpoint the sources of gravitational waves and analyze the signals. Approval was granted on February 17, 2016.

Gravitational waves—ripples in the fabric of space and time produced by dramatic events in the universe, such as merging black holes, and predicted as a consequence of Albert Einstein's 1915 general theory of relativity—carry information about their origins and about the nature of gravity that cannot otherwise be obtained. With their first direct detection, announced on February 11, scientists opened a new window onto the cosmos.

The twin LIGO Observatories at Hanford, Washington, and Livingston, Louisiana, are funded by the U.S. National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. Advanced LIGO—a major upgrade to the sensitivity of the instruments compared to the first generation LIGO detectors—began scientific operations in September 2015. Funded in large part by the NSF, Advanced LIGO enabled a large increase in the volume of the universe probed, leading to the discovery of gravitational waves during its first observation run.

At each observatory, the two-and-a-half-mile (4-km) long L-shaped interferometer uses laser light split into two beams that travel back and forth down the arms (four-foot diameter tubes kept under a near-perfect vacuum). The beams are used to monitor the distance between mirrors precisely positioned at the ends of the arms. According to Einstein's theory, the distance between the mirrors will change by an infinitesimal amount when a gravitational wave passes by the detector. A change in the lengths of the arms smaller than one-ten-thousandth the diameter of a proton (10-19 meter) can be detected.

According to David Reitze, executive director of LIGO and a Caltech research professor, the degree of precision achieved by Advanced LIGO is analogous to being able to measure the distance between our solar system and the sun's nearest neighbor Alpha Centauri—about 4.4 light-years away—accurately to within a few microns, a tiny fraction of the diameter of a human hair.

"We have built an exact copy of that instrument that can be used in the LIGO-India Observatory," says David Shoemaker, leader of the Advanced LIGO Project and director of the MIT LIGO Lab, "ensuring that the new detector can both quickly come up to speed and match the U.S. detector performance."

LIGO will provide Indian researchers with the components and training to build and run the new Advanced LIGO detector, which will then be operated by the Indian team.

According to a statement from the Indian Cabinet, "LIGO-India will also bring considerable opportunities in cutting edge technology for the Indian industry," which will be responsible for the construction of the new observatory's 4-kilometer-long beam tubes. In addition, the Cabinet statement says, "The project will motivate Indian students and young scientists to explore newer frontiers of knowledge, and will add further impetus to scientific research in the country."

The Indian effort brings together three of the country's top research institutes; the Inter-University Centre for Astronomy and Astrophysics (IUCAA), the Raja Ramanna Centre for Advanced Technology (RRCAT), and the Institute for Plasma Research (IPR). The project is managed by the Department of Atomic Energy and the Department of Science and Technology.

"It is technically feasible for LIGO-India to go online by the end of 2023," says Fred Raab, head of the LIGO Hanford Observatory and LIGO Laboratory liaison for LIGO-India. LIGO scientists have made dozens of trips to India to work with Indian colleagues, especially with the three nodal institutes that would have primary responsibility for construction and operation of LIGO India: IPR Gandhinagar, RRCAT Indore, and IUCAA Pune. "Together, we have identified an excellent site for the facilities and have transferred detailed LIGO drawings of the facilities and vacuum system to IPR, after adapting them for conditions in India," he says.

Scientists at RRCAT have designed a special testing/prototype facility for receiving Advanced LIGO parts; have been training the teams that will install and commission the detector; and are currently cross-checking the IPR vacuum-system drawings against the Advanced LIGO detector drawings, to ensure a good fit and rapid installation for the third Advanced LIGO detector. In addition to leading the site-selection process, IUCAA scientists have been setting up a computing center for current and future data. This preparation should make it possible for India to carry the project forward rapidly.

"LIGO-India will further expand the international network that started with the partnership between LIGO and Virgo, which operates a detector near Pisa, Italy," says Stanley Whitcomb, LIGO chief scientist. "With LIGO-India added to the network, we will not only detect more sources, we will dramatically increase the number of sources that can be pinpointed so that they can be studied using other types of telescopes." That ability is pivotal because combining both gravitational-wave and light-based astronomy enables a much more robust understanding of an observed object's characteristics—in much the same way that lightning is better comprehended through sight and hearing than sight alone.

"The game to see the light from these catastrophic mergers is on," says Mansi Kasliwal, assistant professor of astronomy and the leader of the Caltech effort to search for electromagnetic emission from gravitational waves using the intermediate Palomar Transient Factory, a robotic survey for astrophysical transients (brief, intense flashes of light), and a network of other telescopes. "LIGO India is out of the plane of the other three advanced gravitational-wave interferometers. Thus, it will help narrow down the on-sky location of the gravitational waves tremendously and give a big boost to the astronomers hunting for the light."

Indian astronomers have a long tradition of work in general relativity, gravitational waves, the development of algorithms for gravitational wave detection, and also in the data analysis itself, notes Ajit Kembhavi, emeritus professor at IUCAA Pune and chair of the LIGO-India site-selection committee. "The LIGO-India project provides a great opportunity to take these interests forward and to participate in the rapid development of the field, which may very well come to dominate astronomy for some time," he says.

"LIGO-India will be able to attract young people with a variety of skills from the numerous students who are engaged in strong programs in STEM education," adds Somak Raychaudhury, director of IUCAA Pune.

Fleming Crim, assistant director for mathematical and physical sciences at NSF, praised the expansion of the project, saying, "Because the science reward is so strong, NSF enthusiastically endorses the decision of the Indian government to proceed with authorizing funding for the LIGO-India project."

Gabriela González, a professor of physics at Louisiana State University and spokesperson for the LIGO Scientific Collaboration (LSC), says LIGO will "enable us to answer fundamental questions about the universe that no other type of astrophysics or astronomy can answer." The LSC consists of more than 1000 scientists from more than 90 institutions worldwide, including a large group of researchers in India

The project may also reveal answers to questions no one has yet thought to ask. Notes Reitze: "Any time you turn on some new type of telescope or microscope, you discover things you couldn't anticipate. So while there will be certain sources of gravitational waves that we expect to see, the really exciting part is what we did not predict and what we did not expect to see."

Writer: 
Kathy Svitil
Home Page Title: 
LIGO-India Gets Green Light
Listing Title: 
LIGO-India Gets Green Light
Writer: 
Exclude from News Hub: 
No
Short Title: 
LIGO-India Gets Green Light
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
LIGO-India, a third Advanced LIGO Observatory, will improve scientists' ability to pinpoint the sources of gravitational waves and analyze the signals.

Astronomy Hosts New Public Stargazing and Lecture Series

Caltech's astronomy department is kicking off a new stargazing and lecture series with the first installment taking place this Friday, February 19, at 7 p.m. in Hameetman Auditorium on campus. The monthly events will be free and open to the public and are designed to appeal to scientists and nonscientists alike. Following a 30-minute lecture on an astronomical topic, attendees will have an opportunity to observe the night sky through a telescope with the help of Caltech students and researchers.

The organizer of the new public education series is Cameron Hummels, a National Science Foundation Postdoctoral Fellow in astrophysics. In his research, Hummels develops computer simulations that model the evolution of galaxies. His hydrodynamical gravitational simulations begin with the very early universe—just a few million years after the Big Bang—and run forward, incorporating gravity and the dynamics of gas to try to reproduce the kinds of galaxies we see in the universe today. The results can be used to better understand astronomical observations and to answer fundamental questions about how galaxies form and evolve.

Hummels has long believed in the importance of public astronomy programs. He has clear memories of his father taking him out one night—he thinks he was in the second grade—to a sidewalk astronomy event in the parking lot of a school near his house. The experience of looking through a telescope for the first time to see Saturn and a star cluster left an indelible impression on him that eventually led him toward a career in astrophysics. "It was really exciting," he says. "And what we're going to be doing is very similar."

Hummels arrived at Caltech last fall, having just completed another postdoctoral fellowship at the University of Arizona. Prior to that, he was a graduate student at Columbia University in New York City, where he and another graduate student, Neil Zimmerman, became directors of the astronomy outreach program, which at the time hosted only a couple of small events each year. With unreliable weather and the city's significant light pollution often hampering planned observing events, Hummels and Zimmerman quickly realized that their programs needed to include another component—an event that would happen regardless of observing conditions. They added a lecture component, inviting fellow students and faculty members to give talks on their research. The events were a hit. Within a couple of years, the semimonthly events were drawing crowds of 150 to 250 people—the capacity of their venue.

Here at Caltech, Hummels is applying the same basic model. For the inaugural event on Friday, Evan Kirby, an assistant professor of astronomy at Caltech, will present a brief lecture titled "An Archaeological Road Trip with the Keck Telescopes" at 7 p.m. Immediately afterward, if the weather and viewing conditions permit, astronomers will help attendees observe interesting features of the night sky through telescopes on the north athletics field. There will also be an informal Q&A panel on gravitational waves inside following the lecture.

"It's fun for everybody," Hummels says. "Almost everyone has the experience of marveling at the night sky, whether it's from a scientific bent or a philosophical curiosity. As a researcher, I really enjoy it because as excited as you might be about your own topic, the slog of dealing with it day after day can grind you down. Going to these events is reinvigorating because it causes you to rediscover your field a bit."

In addition to the stargazing and lecture series, Hummels is also coordinating a sidewalk astronomy program that will involve Caltech astronomers setting up telescopes on Colorado Boulevard and encouraging passersby to take a look at the heavens. He set up a similar program at Columbia, on Harlem's 125th Street, and says the response was overwhelming. "It was so rewarding because a lot of the people walking down the street had never looked through a telescope before, and some of them were blown away by the experience," he says. "When you do that sort of thing, you are really reaching out to people who may be totally ambivalent toward science."

For Hummels, public education is what lies at the heart of his outreach efforts. "Having an educated populace is super important," he says. "I think it's extremely important that we, as scientists who are largely funded by publicly funded agencies, give back to the community. And I think astronomy lends itself very well as a tool for engaging the public in science education—plus it's entertainment!"

Hameetman Auditorium is located in the Cahill Center for Astronomy and Astrophysics at 1216 E. California Blvd. Stargazing will only be possible if the skies are clear. You can check the Astronomy Outreach page on the day of the event for weather status. No reservations are necessary to attend.

Writer: 
Kimm Fesenmaier
Home Page Title: 
New Public Stargazing and Lecture Series
Listing Title: 
New Public Stargazing and Lecture Series
Writer: 
Exclude from News Hub: 
No
Short Title: 
New Public Stargazing and Lecture Series
News Type: 
In Our Community
Exclude from Home Page: 
Home Page Summary: 
The events are free and designed to engage the public in astronomy and to give everyone an opportunity to look through a telescope.
Monday, February 29, 2016

Modeling molecules at the microscale

Pages