"Failed Stars" Host Powerful Auroral Displays

Caltech astronomers say brown dwarfs behave more like planets than stars

Brown dwarfs are relatively cool, dim objects that are difficult to detect and hard to classify. They are too massive to be planets, yet possess some planetlike characteristics; they are too small to sustain hydrogen fusion reactions at their cores, a defining characteristic of stars, yet they have starlike attributes.

By observing a brown dwarf 20 light-years away using both radio and optical telescopes, a team led by Gregg Hallinan, assistant professor of astronomy at Caltech, has found another feature that makes these so-called failed stars more like supersized planets—they host powerful auroras near their magnetic poles.

The findings appear in the July 30 issue of the journal Nature.

"We're finding that brown dwarfs are not like small stars in terms of their magnetic activity; they're like giant planets with hugely powerful auroras," says Hallinan. "If you were able to stand on the surface of the brown dwarf we observed—something you could never do because of its extremely hot temperatures and crushing surface gravity—you would sometimes be treated to a fantastic light show courtesy of auroras hundreds of thousands of times more powerful than any detected in our solar system."

In the early 2000s, astronomers began finding that brown dwarfs emit radio waves. At first, everyone assumed that the brown dwarfs were creating the radio waves in basically the same way that stars do—through the action of an extremely hot atmosphere, or corona, heated by magnetic activity near the object's surface. But brown dwarfs do not generate large flares and charged-particle emissions in the way that our sun and other stars do, so the radio emissions were surprising.

While in graduate school, in 2006, Hallinan discovered that brown dwarfs can actually pulse at radio frequencies. "We see a similar pulsing phenomenon from planets in our solar system," says Hallinan, "and that radio emission is actually due to auroras." Since then he has wondered if the radio emissions seen on brown dwarfs might be caused by auroras.

Auroral displays result when charged particles, carried by the stellar wind for example, manage to enter a planet's magnetosphere, the region where such charged particles are influenced by the planet's magnetic field. Once within the magnetosphere, those particles get accelerated along the planet's magnetic field lines to the planet's poles, where they collide with gas atoms in the atmosphere and produce the bright emissions associated with auroras.

Following his hunch, Hallinan and his colleagues conducted an extensive observation campaign of a brown dwarf called LSRJ 1835+3259, using the National Radio Astronomy Observatory's Very Large Array (VLA), the most powerful radio telescope in the world, as well as optical instruments that included Palomar's Hale Telescope and the W. M. Keck Observatory's telescopes.


This movie shows the brown dwarf, LSRJ 1835+3259, as seen with the National Radio Astronomy Observatory's Very Large Array, pulsing as a result of the process that creates powerful auroras.
Credit: Stephen Bourke/Caltech

Using the VLA they detected a bright pulse of radio waves that appeared as the brown dwarf rotated around. The object rotates every 2.84 hours, so the researchers were able to watch nearly three full rotations over the course of a single night.

Next, the astronomers used the Hale Telescope to observe that the brown dwarf varied optically on the same period as the radio pulses. Focusing on one of the spectral lines associated with excited hydrogen—the h-alpha emission line—they found that the object's brightness varied periodically.

Finally, Hallinan and his colleagues used the Keck telescopes to measure precisely the brightness of the brown dwarf over time—no simple feat given that these objects are many thousands of times fainter than our own sun. Hallinan and his team were able to establish that this hydrogen emission is a signature of auroras near the surface of the brown dwarf.

"As the electrons spiral down toward the atmosphere, they produce radio emissions, and then when they hit the atmosphere, they excite hydrogen in a process that occurs at Earth and other planets, albeit tens of thousands of times more intense," explains Hallinan. "We now know that this kind of auroral behavior is extending all the way from planets up to brown dwarfs."

In the case of brown dwarfs, charged particles cannot be driven into their magnetosphere by a stellar wind, as there is no stellar wind to do so. Hallinan says that some other source, such as an orbiting planet moving through the brown dwarf's magnetosphere, may be generating a current and producing the auroras. "But until we map the aurora accurately, we won't be able to say where it's coming from," he says.

He notes that brown dwarfs offer a convenient stepping stone to studying exoplanets, planets orbiting stars other than our own sun. "For the coolest brown dwarfs we've discovered, their atmosphere is pretty similar to what we would expect for many exoplanets, and you can actually look at a brown dwarf and study its atmosphere without having a star nearby that's a factor of a million times brighter obscuring your observations," says Hallinan.

Just as he has used measurements of radio waves to determine the strength of magnetic fields around brown dwarfs, he hopes to use the low-frequency radio observations of the newly built Owens Valley Long Wavelength Array to measure the magnetic fields of exoplanets. "That could be particularly interesting because whether or not a planet has a magnetic field may be an important factor in habitability," he says. "I'm trying to build a picture of magnetic field strength and topology and the role that magnetic fields play as we go from stars to brown dwarfs and eventually right down into the planetary regime."

The work, "Magnetospherically driven optical and radio aurorae at the end of the main sequence," was supported by funding from the National Science Foundation. Additional authors on the paper include Caltech senior postdoctoral scholar Stephen Bourke, Caltech graduate students Sebastian Pineda and Melodie Kao, Leon Harding of JPL, Stuart Littlefair of the University of Sheffield, Garret Cotter of the University of Oxford, Ray Butler of National University of Ireland, Galway, Aaron Golden of Yeshiva University, Gibor Basri of UC Berkeley, Gerry Doyle of Armagh Observatory, Svetlana Berdyugina of the Kiepenheuer Institute for Solar Physics, Alexey Kuznetsov of the Institute of Solar-Terrestrial Physics in Irkutsk, Russia, Michael Rupen of the National Radio Astronomy Observatory, and Antoaneta Antonova of Sofia University.

 

 

Writer: 
Kimm Fesenmaier
Frontpage Title: 
Powerful Auroras Shed Light On Brown Dwarfs
Writer: 
Exclude from News Hub: 
No
Short Title: 
Powerful Auroras Shed Light On Brown Dwarfs
News Type: 
Research News

$100 Million Gift from Gordon and Betty Moore Will Bolster Graduate Fellowships

Trustees Gordon (PhD '54) and Betty Moore have pledged $100 million to Caltech, the second-largest single contribution in the Institute's history. With this gift, they have created a permanent endowment and entrusted the choice of how to direct the funds to the Institute's leadership—providing lasting resources coupled with uncommon freedom.

"Those within the Institute have a much better view of what the highest priorities are than we could have," Intel Corporation cofounder Gordon Moore explains. "We'd rather turn the job of deciding where to use resources over to Caltech than try to dictate it from outside."

Applying the Moores' donation in a way that will strengthen the Institute for generations to come, Caltech's president and provost have decided to dedicate the funds to fellowships for graduate students.

"Gordon and Betty Moore's incredibly generous gift will have a transformative effect on Caltech," says President Thomas F. Rosenbaum, holder of the Institute's Sonja and William Davidow Presidential Chair and professor of physics. "Our ultimate goal is to provide fellowships for every graduate student at Caltech, to free these remarkable young scholars to pursue their interests wherever they may lead, independent of the vicissitudes of federal funding. The fellowships created by the Moores' gift will help make the Institute the destination of choice for the most original and creative scholars, students and faculty members alike."

Further multiplying the impact of the Moores' contribution, the Institute has established a program that will inspire others to contribute as well. The Gordon and Betty Moore Graduate Fellowship Match will provide one additional dollar for every two dollars pledged to endow Institute-wide fellowships. In this way, the Moores' $100 million commitment will increase fellowship support for Caltech by a total of $300 million.

Says Provost Edward M. Stolper, the Carl and Shirley Larson Provostial Chair and William E. Leonhard Professor of Geology: "Investigators across campus work with outstanding graduate students to advance discovery and to train the next generation of teachers and researchers. By supporting these students, the Moore Match will stimulate creativity and excellence in perpetuity all across Caltech. We are grateful to Gordon and Betty for allowing us the flexibility to devote their gift to this crucial priority."

The Moores describe Caltech as a one-of-a-kind institution in its ability to train budding scientists and engineers and conduct high-risk research with world-changing results—and they are committed to helping the Institute maintain that ability far into the future.

"We appreciate being able to support the best science," Gordon Moore says, "and that's something that supporting Caltech lets us do."

The couple's extraordinary philanthropy already has motivated other benefactors to follow their example, notes David L. Lee, chair of the Caltech Board of Trustees.

"The decision that Gordon and Betty made—to give such a remarkable gift, to make it perpetual through an endowment, and to remove any restrictions as to how it can be used—creates a tremendous ripple effect," Lee says. "Others have seen the Moores' confidence in Caltech and have made commitments of their own. We thank the Moores for their leadership."

The Moores consider their gift a high-leverage way of fostering scientific research at a place that is close to their hearts. Before he went on to cofound Intel, Gordon Moore earned a PhD in chemistry from Caltech.

"It's been a long-term association that has served me well," he says.

Joining him in Pasadena just a day after the two were married, Betty Moore became active in the campus community as well. A graduate of San Jose State College's journalism program, she secured a job at the Ford Foundation's new Pasadena headquarters and also made time to come to campus to participate in community activities, including the Chem Wives social club.

"We started out at Caltech," she recalls. "I had a feeling that it was home away from home. It gives you a down-home feeling when you're young and just taking off from family. You need that connection somehow."

After earning his PhD from Caltech in 1954, Gordon Moore took a position conducting basic research at the Applied Physics Laboratory at Johns Hopkins University. Fourteen years and two jobs later, he and his colleague Robert Noyce cofounded Intel Corp. Moore served as executive vice president of the company until 1975, when he took the helm. Under his leadership—as chief executive officer (1975 to 1987) and chairman of the board (1987 to 1997)—Intel grew from a Mountain View-based startup to a giant of Silicon Valley, worth more than $140 billion today.

Moore is widely known for "Moore's Law," his 1965 prediction that the number of transistors that can fit on a chip would double every year. Still relevant 50 years later, this principle pushed Moore and his company—and the tech industry as a whole—to produce continually more powerful and cheaper semiconductor chips.

Gordon Moore joined the Caltech Board of Trustees in 1983 and served as chair from 1993 to 2000. That same year, he and his wife established the Gordon and Betty Moore Foundation, an organization dedicated to creating positive outcomes for future generations in the San Francisco Bay Area and around the world.

Among numerous other honors, Gordon Moore is a member of the National Academy of Engineering, a fellow of the Institute of Electrical and Electronics Engineers, and a recipient of the National Medal of Technology and the Presidential Medal of Freedom. 

Exclude from News Hub: 
No
News Type: 
In Our Community

Clean Water For Nepal

On the steep, tea-covered hillsides of Ilam in eastern Nepal, where 25 percent of households live below the poverty level and electricity is scarce, clean running water is scarcer still. What comes out of the region's centralized distribution systems is unfiltered, untreated, and teeming with nitrates, viruses, and E. coli. Purifying it is the consumer's responsibility.

But wood and yak dung, the only available fuels for boiling water, are precious, and purification tablets impart an unpleasant chlorine taste. The result? During the rainy season, local hospitals overflow with typhoid and gastrointestinal cases, mostly involving children and tainted runoff.

That may change, thanks to a gravity flow and slow-sand filtration system designed by Caltech undergraduates. They represent EWB-Caltech, one of the newest chapters of Engineers Without Borders USA, a nongovernmental organization (NGO) whose mission is to design and implement sustainable engineering projects in underprivileged communities.

Founded in 2012 by Sarah Wright (BS '13, bioengineering), EWB-Caltech already has about 30 members. This summer, a half dozen of the chapter's members are traveling to Ilam, where they are staying with local villagers while helping to oversee and implement the system's construction. The hillside will be partly excavated and then reconstructed. Layers of rock, gravel, sand, polyethylene sheeting, and soil will soak up rainfall, filtering and purifying it as it trickles into underground water. Pipes tapping into the underground water will run downhill to a small communal enclosure made of poured concrete, providing a reliable supply of clean water for about 100 households, with another 200 indirectly affected.

The students will not be working alone, says their mentor, environmental engineering consultant Gordon Treweek (MS '71, PhD '75) who is partnering with Caltech engineering students for the first time. "All EWB projects are community-driven, with the local workforce providing much of the labor. And we've received tremendous logistical support, including interpreters, from the Namsaling Community Development Center, an NGO in Ilam that had previously worked with an EWB chapter from the University of Colorado, Boulder."

According to EWB requirements the Nepalese must contribute 5 percent of the project's budget. EWB-Caltech copresidents Jihoon Lee (a senior in bioengineering) and Nauman Javed (a senior in physics) acknowledge that successfully coming up with the remainder—over $20,000—involved nearly continuous fund-raising. "We've been applying for grants, soliciting private donations, partnering with companies, especially water-related and environmental corporations, and we held a benefit dinner in January that was largely attended by Caltech faculty and friends," says Lee.

Both a 10-day on-site assessment trip last summer and this summer's trip were covered by individual donations and grants. The assessment trip took Treweek, Javed, and fellow Caltech senior Webster Guan (chemical engineering) to Ilam to meet with the NGO; to survey the local community of about 100 families to ascertain their needs and willingness to assist in the construction and ongoing maintenance of the water tap stand; and to gather predesign data for planning construction and estimating costs.

"The support we have received from Caltech alumni directly and through their networks of contacts at Northrop Grumman and Boeing has been invaluable in helping to keep this project moving forward," Treweek says.

After the assessment trip, the students spent the 2014–15 school year preparing detailed engineering documents using computer-aided design techniques. In this, they were assisted by the water-resource engineering firms Carollo Engineers and Montgomery Watson Harza, whose pro bono involvement did not surprise Treweek. "Consulting engineering firms frequently donate resources for projects like this," he says. "It's socially responsible, and it gives them a chance to observe future engineers addressing the four traditional phases of engineering: planning, design, fund-raising, and construction."

With preventable infectious diseases a leading component of Ilam's one-in-three infant mortality rate, the project includes a public-education component. "Besides training the local villagers who will maintain our spring-water source protection system," says Javed, "we plan to visit local schools, demonstrate how the system works, teach a little germ theory."

But no amount of careful planning can guarantee success. Similar projects have failed due to engineering problems, misaligned long-term governance strategies, eleventh-hour reprioritizations by the community, even simple miscommunication. "We've drafted plenty of contingency plans," affirms Lee, "with great support from EWB-USA. Their stringent review procedures covered every engineering and social aspect of the project, and they've given us detailed feedback on our drawings, schedules, and rationales."

After the implementation phase—which ends just one week before classes resume back in Pasadena—EWB-Caltech will continue to monitor the site for five to six years. By then the current members will have moved on and a new group of student leaders will have taken over this project. But for now, they are spending their summer trying to build a better world, drop by drop.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Alone in the Darkness: Mariner 4 to Mars, 50 Years Later

July 14 marks 50 years of visual reconnaissance of the solar system by NASA's Jet Propulsion Laboratory (JPL), beginning with Mariner 4's flyby of Mars in 1965.

Among JPL's first planetary efforts, Mariners 3 and 4 (known collectively as "Mariner Mars") were planned and executed by a group of pioneering scientists at Caltech in partnership with JPL. NASA was only 4 years old when the first Mars flyby was approved in 1962, but the core science team had been working together at Caltech for many years. The team included Caltech faculty Robert Sharp (after whom Mount Sharp, the main target of the Mars rover Curiosity, is named) and Gerry Neugebauer, professor of geology and of professor of physics, respectively; Robert Leighton and H. Victor Neher, professors of physics; and Bill Pickering, professor of electrical engineering, who was the director of JPL from 1954–1976. Rounding out the Caltech contingent was a young Bruce Murray, a new addition to the geology faculty, who would follow Pickering as JPL director in 1976.

"The Mariner missions marked the beginning of planetary geology, led by researchers at Caltech including Bruce Murray and Robert Sharp," said John Grotzinger, the Fletcher Jones Professor of Geology and chair of the Division of Geological and Planetary Sciences. "These early flyby missions showed the enormous potential of Mars to provide insight into the evolution of a close cousin to Earth and stimulated the creation of a program dedicated to iterative exploration involving orbiters, landers, and rovers."

By today's standards, Mariner Mars was a virtual leap into the unknown. NASA and JPL had little spaceflight experience to guide them. There had been just one successful planetary mission—Mariner 2's journey past Venus in 1962—to build upon. Sending spacecraft to other planets was still a new endeavor.  

The Mariner Mars spacecraft were originally designed without cameras. Neugebauer, Murray, and Leighton felt that a lot of science questions could be answered via images from this close encounter with Mars. As it turned out, sending back photos of the planet that had so long captured the imaginations of millions had the added benefit of making the Mars flyby more accessible to the public.

Mariner 3 launched on November 5, 1964. The Atlas rocket that boosted it clear of the atmosphere functioned perfectly (not always the case in the early years of spaceflight), but the shroud enclosing the payload failed to fully open and the spacecraft, unable to collect sunlight on its solar panels, ceased to function after about nine hours of flight.

Mariner 4 launched three weeks later on November 28 with a redesigned shroud. The probe deployed as planned and began its journey to Mars. But there was still drama in store for the mission. Within the first hour of the flight, the rocket's upper stage had pushed the spacecraft out of Earth orbit, and the solar panels had deployed. Then the guidance system acquired a lock on the sun, but a second object was needed to guide the spacecraft. This depended on a photocell finding the bright star Canopus, which was attempted about 15 hours later. During these first attempts, however, the primitive onboard electronics erroneously identified other stars of similar brightness.

Controllers managed to solve this problem but over the next few weeks realized that a small cloud of dust and paint flecks, ejected when Mariner 4 deployed, was traveling along with the spacecraft and interfering with the tracking of Canopus. A tiny paint chip, if close enough to the star tracker, could mimic the star. After more corrective action, Canopus was reacquired and Mariner's journey continued largely without incident. This star-tracking technology, along with many other design features of the spacecraft, has been used in every interplanetary mission JPL has flown since.

At the time, what was known about Mars had been learned from Earth-based telescopes. The images were fuzzy and indistinct—at its closest, Mars is still about 35 million miles distant. Scientific measurements derived from visual observations of the planet were inexact. While ideas about the true nature of Mars evolved throughout the first half of the 20th century, in 1965 nobody could say with any confidence how dense the martian atmosphere was or determine its exact composition. Telescopic surveys had recorded a visual event called the "wave of darkening," which some scientists theorized could be plant life blooming and perishing as the harsh martian seasons changed. A few of them still thought of Mars as a place capable of supporting advanced life, although most thought it unlikely. However, there was no conclusive evidence for either scenario.

So, as Mariner 4 flew past Mars, much was at stake, both for the scientific community and a curious general public. Were there canals or channels on the surface, as some astronomers had reported? Would we find advanced life forms or vast collections of plant life? Would there be liquid water on the surface?

Just over seven months after launch, the encounter with Mars was imminent. On July 14, 1965, Mariner's science instruments were activated. These included a magnetometer to measure magnetic fields, a Geiger counter to measure radiation, a cosmic ray telescope, a cosmic dust detector, and the television camera.

About seven hours before the encounter, the TV camera began acquiring images. After the probe passed Mars, an onboard data recorder—which used a 330-foot endless loop of magnetic tape to store still pictures—initiated playback of the raw images to Earth, transmitting them twice for certainty. Each image took 10 hours to transmit.

The 22 images sent by Mariner 4 appeared conclusive. Although they were low-resolution and black-and-white, they indicated that Mars was not a place likely to be friendly to life. It was a cold, dry desert, covered with so many craters as to strongly resemble Earth's moon. The atmospheric density was about one-thousandth that of Earth, and no liquid water was apparent on the surface.

When discussing the mission during an interview at Caltech in 1977, Leighton recalled viewing the first images at JPL. "If someone had asked 'What do you expect to see?' we would have said 'craters'…[yet] the fact that craters were there, and a predominant land form, was somehow surprising."

Leighton also recalled a letter he received from, of all people, a dairy farmer. It read, "I'm not very close to your world, but I really appreciate what you are doing. Keep it going." Leighton said of the sentiment, "A letter from a milkman…I thought that was kind of nice."

After its voyage past Mars, Mariner 4 maintained intermittent communication with JPL and returned data about the interplanetary environment for two more years. But by the end of 1967, the spacecraft had suffered tens of thousands of micrometeoroid impacts and was out of the nitrogen gas it used for maneuvering. The mission officially ended on December 21.

"Mariner 4 defined and pioneered the systems and technologies needed for a truly interplanetary spacecraft," says Rob Manning (BS '81), JPL's chief engineer for the Low-Density Supersonic Decelerator and formerly chief engineer for the Mars Science Laboratory. "All U.S. interplanetary missions that have followed were directly derived from the architecture and innovations that engineers behind Mariner invented. We stand on the shoulders of giants."

Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Teaser Image: 

Distant Black Hole Wave Twists Like Giant Whip

Fast-moving magnetic waves emanating from a distant supermassive black hole undulate like a whip whose handle is being shaken by a giant hand, according to a new study involving Caltech scientists, which used data from the National Radio Astronomy Observatory's Very Long Baseline Array (VLBA) to explore the galaxy-black hole system known as BL Lacertae (BL Lac) in high resolution.

The team's findings, detailed in the April 10 issue of the Astrophysical Journal, mark the first time so-called Alfvén (pronounced Alf-vain) waves have been identified in a black hole system.

Alfvén waves are generated when magnetic field lines, such as those coming from the sun or the disk around a black hole, interact with charged particles, or ions, and become twisted, and in the case of BL Lac and sometimes for the sun, are coiled into a helix. In the case of BL Lac, the ions are in the form of particle jets that are flung from opposite sides of the black hole at near light speed.

"Imagine running a water hose through a slinky that has been stretched taut," says first author Marshall Cohen, professor emeritus of astronomy at Caltech. "A sideways disturbance at one end of the slinky will create a wave that travels to the other end, and if the slinky sways to and fro, the hose running through its center has no choice but to move with it."

A similar thing is happening in BL Lac, Cohen says. The Alfvén waves are analogous to the propagating transverse motions of the slinky, and as the waves propagate along the magnetic field lines, they can cause the field lines—and the particle jets encompassed by the field lines—to move as well.

It's common for black hole particle jets to bend—and some even swing back and forth. But those movements typically take place on timescales of thousands or millions of years. "What we see is happening on a timescale of weeks," Cohen says. "We're taking pictures once a month, and the position of the waves is different each month."

Interestingly, from the vantage of astronomers on Earth, the Alfvén waves emanating from BL Lac appear to be traveling about five times faster than the speed of light. "The waves only appear to be superluminal, or moving faster than light," Cohen says. "The high speed is an optical illusion resulting from the fact that the waves are traveling very close to, but below, the speed of light, and are passing just to the side of our line of sight."

Co-author David Meier, a visiting associate in astronomy and now-retired astrophysicist from JPL, added, "By analyzing these waves, we are able to determine the internal properties of the jet, and this will help us ultimately understand how jets are produced by black holes."

Other authors on the paper, "Studies of the Jet in BL Lacertae II Superluminal Alfvén Waves," include Talvikki Hovatta, a former Caltech postdoctoral scholar; as well as scientists from the University of Cologne and the Max Planck Institute for Radio Astronomy in Germany; the Isaac Newton Institute of Chile; Aalto University in Finland; the Astro Space Center of Lebedev Physical Institute, the Pulkovo Observatory, and the Crimean Astrophysical Observatory in Russia. Purdue University, Denison University, and the Jet Propulsion Laboratory were also involved in the study.

Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Teaser Image: 

JPL News: Searing Sun Seen in X-rays

X-rays light up the surface of our sun in a bouquet of colors in this new image containing data from NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR. The high-energy X-rays seen by NuSTAR are shown in blue, while green represents lower-energy X-rays from the X-ray Telescope instrument on the Hinode spacecraft, named after the Japanese word for sunrise. The yellow and green colors show ultraviolet light from NASA's Solar Dynamics Observatory.

NuSTAR usually spends its time investigating the mysteries of black holes, supernovae, and other high-energy objects in space. But it can also look closer to home to study our sun.

"What's great about NuSTAR is that the telescope is so versatile that we can hunt black holes millions of light-years away and we can also learn something fundamental about the star in our own backyard," said Brian Grefenstette, a Caltech research scientist and an astronomer on the NuSTAR team.

NuSTAR is a Small Explorer mission led by Caltech and managed by NASA's Jet Propulsion Laboratory in Pasadena, California, for NASA's Science Mission Directorate in Washington. JPL is managed by Caltech for NASA.

Read the full story from JPL News

Images: 
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News

New VP for Student Affairs Named

Joseph Shepherd (PhD '81), the C. L. "Kelly" Johnson Professor of Aeronautics and professor of mechanical engineering, is leaving his post as dean of graduate studies to succeed Anneila Sargent (MS '67, PhD '78), the Ira S. Bowen Professor of Astronomy, as vice president for student affairs. Shepherd's new role is effective September 15.

Sargent, who served the campus as the leader of student affairs the last eight years, announced in March that she was leaving the post to return to research and teaching full time. Shepherd, who joined the Caltech faculty in 1993, has served the last six years as the dean of graduate studies.

We recently sat down with Shepherd to talk about his past role and his new one, his strengths and goals, and his experience at Caltech.

 

Q: What does the vice president for student affairs do?

A: Student Affairs includes the offices of the undergraduate and graduate deans as well as obvious things like the registrar, undergraduate admissions, fellowships and study abroad, the career center, the health center, and the counseling center. It also includes things you might not think of—athletics; performing and visual arts, which includes the music programs, the theater program, the various arts programs, and all of the faculty and instructors that make these programs possible; and a whole group of organizations lumped under "auxiliaries."

The term "auxiliaries" is misleading, because they're central to student life. Housing and dining are the biggest parts, but there are services like the C-Store, the Red Door Café, the Caltech Store and Wired.

 

Q: What makes this role exciting for you?

A:  People speculate about what it is that makes Caltech a great school. A lot of folks say, "Well, it's because it's so small." But I think it's also because we work with people instead of creating some bureaucratic mechanism to solve problems. We say, "All right, what's the issue here? How can we resolve this?" instead of, "We need to create a rule. And then we need to create a group to enforce the rule." My approach is to ask, "What do we want the outcome to be?" In Student Affairs, you want the outcome to be something that supports the students, supports the faculty, and then you make sure that it's not going to adversely affect the Institute.

 

Q: Are there any changes coming, any initiatives you want to establish?

A: We need to think about how we build on the strengths we have and improve the things that we're weakest at. Before you make any changes to an organization, you need to understand those two things. There are a lot of parts to Student Affairs, so I need to understand the strong points of those organizations, and then get them to help me formulate what's important to do.

You always have to be careful of unintended consequences. As they say in chess, you want to think several moves deep. All right, suppose we do that. What will it mean for different parts of our population? Do we make this choice based on the data we have, or do we need more data? Will there be effects on people we haven't thought about? Maybe we need to go talk to those people.

When you have the authority to change things, you also have the responsibility to ask, "Are these the right changes?" Nothing happens in isolation. Anything you do is invariably going to wind up touching quite a few people.

 

Q: You've been dean of graduate studies since 2009. Did you consider taking a breather before jumping into this?

A: Well, much to my surprise, I found that being the dean of graduate studies was rewarding in many different ways. Sometimes you had to do some difficult things, but I actually liked being the dean. I was able, to some extent, to continue my research. I did some teaching—although last year I taught a major course all three terms, and I had my research group—and I was the dean of graduate studies. That taught me a lesson: a man's got to know his limitations.

So when I was asked if I would take this position, I did think about taking a break and not doing it. I enjoy my research and I enjoy teaching. I enjoy working with students, but I also enjoy trying to help the Institute as a whole. Here at Caltech, we pride ourselves on the notion that we have this very special environment. We have this small school, and we have dedicated professionals that work together with faculty to nurture that environment—having faculty who are invested in participating in the key administrative roles is essential.

When I was a graduate student here, my adviser was Brad Sturtevant [MS '56, PhD '60, and a lifelong faculty member thereafter]. Brad was the executive officer for aeronautics [1972-76]. He was in charge of the committee that built the Sherman Fairchild Library and he was on the faculty board. He emphasized to me that being involved in administration was just as valuable as all the other aspects of being a faculty member. He was a dedicated researcher, but he also felt strongly that you should be a good citizen. You should contribute.

 

Q: It seems like this is more than just a duty to you, though.

A: I'm looking forward to it. I'm also very conscious of the responsibility. I think it's going to be important for us all to think about how we maintain the excellence of the Institute and that we imagine how this place is going to evolve. As society evolves around us, we will naturally wind up changing. We need to do that in a thoughtful way so that we continue to be the special organization that we are.

At the end of the day, I'm counting on help from the faculty and staff. Caltech works because of the committed individuals within our organizations, the personal connections we form as we work together and the cooperation across the campus that these connections enable.  It's a collective enterprise.

I think administration is not something that's done to people. It's being responsible for making sure that folks have the right work environment, the right job assignments, and the right resources. It's making sure we're doing the right things with the finite resources we have. One of our former presidents said something that's always stuck with me: an administrator's goals are not about their own career so much as helping the careers of others. You need to think about how you're helping the people working for you, because they have goals and aspirations. That's where you take your satisfaction.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community
Thursday, September 24, 2015
Location to be announced

2015 Teaching Conference - Save-the-Date

Katz Receives Prestigious Award for Mathematics

Caltech professor of mathematics Nets Katz has received the 2015 Clay Research Award from the Clay Mathematics Institute. The award was given jointly to Katz and his collaborator, MIT professor of mathematics Larry Guth, for their solution of the Erdős distance problem and for "other joint and separate contributions to combinatorial incidence geometry."

Combinatorial incidence geometry is the study of possible configurations, or arrangements, between geometric objects such as points or lines. One basic open problem in this field is the Erdős distance problem, for which Katz received the Clay award. The Erdős distance problem examines a set "large" number of points distributed in various arrangements in a two-dimensional plane. In some configurations, like a lattice or grid, the points are evenly spaced. In others, as in a random distribution of points, the spacing between points is varied. The problem asks how many times the same distance can occur between these points, and what is the minimum number of distinct distances possible between these points.

In 2010, Guth and Katz proved that the minimum number of unique distances between n points, regardless of their spatial configuration, is the number of points n divided by the logarithm of n: n/log(n).

Katz's work on the Erdős problem is an example of his larger research interest in coincidences. By demonstrating that there is a minimum number of unique distances between points, even when in a uniform arrangement like a lattice, Katz showed that coincidences—such as many sets of points having the same distance between them—can occur only a limited number of times.

Katz received his PhD from the University of Pennsylvania and was a professor of mathematics at Indiana University Bloomington before joining Caltech's faculty in 2013. He was named a Guggenheim Fellow in 2012. Previously, his research was in harmonic analysis, a field concerned with representing functions as superpositions of basic oscillating mathematical "waves."

The Clay Mathematics Institute is a private foundation "dedicated to increasing and disseminating mathematical knowledge." Given annually, the Clay Research Award recognizes contemporary mathematical breakthroughs.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

New Dean of Graduate Studies Named

On July 1, 2015, Doug Rees, the Roscoe Gilkey Dickinson Professor of Chemistry, will begin serving as the new dean of graduate studies at Caltech.

"Doug's experience and concern with graduate education make him an ideal choice for dean of graduate studies. I am very pleased that he is willing to make this commitment to the Institute and its students," says Anneila Sargent, vice president for student affairs and the Ira S. Bowen Professor of Astronomy.

As the new dean, Rees will be the principal administrator and representative of Caltech's graduate education program, responsible for attending to concerns regarding the welfare of graduate students as well as for upholding the Institute's rules and policies.

"There are many groups essential to the effective operation of our graduate program that I want to get to know better, starting with the graduate students, the Graduate Office staff, and the option administrators and option reps," says Rees. "In my 26 years at Caltech, I've gained an appreciation for how the graduate programs in biochemistry and molecular biophysics and in chemistry operate, but the cultures in different options across campus can vary significantly, and I look forward to better understanding these distinctions."

Rees says that he is also very much looking forward to working directly with graduate students, staff, and faculty on behalf of the graduate program. Of particular interest during his tenure will be issues relating to the well-being and professional development of graduate students.

"I find research to be an adventure that, while exhilarating, is also challenging, frustrating, and even stressful; those aspects, however, are not incompatible with having a positive student experience and a supportive environment," Rees says. He adds that his priorities will be to raise fellowship support, increase the diversity of the graduate student body, and ensure that students have access to appropriate support services such as health care, counseling, and day care. "In addition, I also hope to be able to explore mechanisms to better prepare students for life after Caltech, including both academic and nonacademic career options," he says.

In his new post, Rees will take the place of C. L. "Kelly" Johnson Professor of Aeronautics and Mechanical Engineering Joseph Shepherd, who has served as the dean of graduate studies since 2009. "Joe leaves big shoes to fill and the campus owes him a huge debt of gratitude for all he has accomplished as dean of graduate studies. What I have learned from watching him in action over the past six years, and more recently as he has been helping me during this transition period, is that the most important quality for the dean is to care about the students—and I will definitely be working to follow his example," Rees says.

Rees received his undergraduate degree from Yale University in 1974 and his PhD from Harvard in 1980, becoming a professor at Caltech in 1989. An investigator with the Howard Hughes Medical Institute, Rees also served as the executive officer for chemistry from 2002 to 2006 and the executive officer for biochemistry and molecular biophysics from 2007 to 2015.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Pages

Subscribe to RSS - PMA