Thursday, September 24, 2015
Beckman Institute, Glanville Courtyard – Beckman Institute

3rd Annual Caltech Teaching Conference

New Dean of Graduate Studies Named

On July 1, 2015, Doug Rees, the Roscoe Gilkey Dickinson Professor of Chemistry, will begin serving as the new dean of graduate studies at Caltech.

"Doug's experience and concern with graduate education make him an ideal choice for dean of graduate studies. I am very pleased that he is willing to make this commitment to the Institute and its students," says Anneila Sargent, vice president for student affairs and the Ira S. Bowen Professor of Astronomy.

As the new dean, Rees will be the principal administrator and representative of Caltech's graduate education program, responsible for attending to concerns regarding the welfare of graduate students as well as for upholding the Institute's rules and policies.

"There are many groups essential to the effective operation of our graduate program that I want to get to know better, starting with the graduate students, the Graduate Office staff, and the option administrators and option reps," says Rees. "In my 26 years at Caltech, I've gained an appreciation for how the graduate programs in biochemistry and molecular biophysics and in chemistry operate, but the cultures in different options across campus can vary significantly, and I look forward to better understanding these distinctions."

Rees says that he is also very much looking forward to working directly with graduate students, staff, and faculty on behalf of the graduate program. Of particular interest during his tenure will be issues relating to the well-being and professional development of graduate students.

"I find research to be an adventure that, while exhilarating, is also challenging, frustrating, and even stressful; those aspects, however, are not incompatible with having a positive student experience and a supportive environment," Rees says. He adds that his priorities will be to raise fellowship support, increase the diversity of the graduate student body, and ensure that students have access to appropriate support services such as health care, counseling, and day care. "In addition, I also hope to be able to explore mechanisms to better prepare students for life after Caltech, including both academic and nonacademic career options," he says.

In his new post, Rees will take the place of C. L. "Kelly" Johnson Professor of Aeronautics and Mechanical Engineering Joseph Shepherd, who has served as the dean of graduate studies since 2009. "Joe leaves big shoes to fill and the campus owes him a huge debt of gratitude for all he has accomplished as dean of graduate studies. What I have learned from watching him in action over the past six years, and more recently as he has been helping me during this transition period, is that the most important quality for the dean is to care about the students—and I will definitely be working to follow his example," Rees says.

Rees received his undergraduate degree from Yale University in 1974 and his PhD from Harvard in 1980, becoming a professor at Caltech in 1989. An investigator with the Howard Hughes Medical Institute, Rees also served as the executive officer for chemistry from 2002 to 2006 and the executive officer for biochemistry and molecular biophysics from 2007 to 2015.

Exclude from News Hub: 
News Type: 
In Our Community

Voting Rights: A Conversation with Morgan Kousser

Three years ago this week, the U.S. Supreme Court ruled unconstitutional a key provision of the Voting Rights Act (VRA), which was enacted in 1965 and extended four times since then by Congress. Section 5 of the act required certain "covered" jurisdictions in the Deep South and in states and counties outside the Deep South that had large populations of Hispanics and Native Americans to obtain "pre-clearance" from the Justice Department or the U.S. District Court in the District of Columbia before changing any election law. The provision was designed to prevent election officials from replacing one law that had been declared to be racially discriminatory with a different but still discriminatory law. A second provision, Section 4(b), contained the formula for coverage.

The VRA, notes Morgan Kousser, the William R. Kenan, Jr., Professor of History and Social Science, has been "very effective. You went from 7 percent of the black voters in Mississippi being registered to vote to 60 percent within three or four years. That was just an amazing change. Even more amazing, Section 5 was flexible enough to prevent almost every kind of new discriminatory technique or device over a period of nearly 50 years." For instance, Kousser notes, "when white supremacists in Mississippi saw that African Americans would soon comprise majorities in some state or local legislative districts, they merged the districts to preserve white majorities everywhere. But Section 5 stopped this runaround and allowed the new black voters real democracy. Voting rights was the one area in which federal law came close to eliminating the country's long, sad history of racial discrimination."

But on June 25, 2013, in a landmark ruling in Shelby County v. Holder, the Court overturned Section 4(b), effectively dismantling Section 5. Without a formula that defines covered jurisdictions, no area falls within the scope of Section 5. Chief Justice John Roberts, writing the 5–4 majority opinion, argued that although the original coverage formula "made sense," it was now outdated, based on "decades-old data and eradicated practices." Asserting that voter turnout and registration rates in covered jurisdictions are nearly equal for whites and African Americans, Roberts also noted that "blatantly discriminatory evasions of federal decrees are rare. And minority candidates hold office at unprecedented levels."

The decision, says Kousser, was wrong. In a comprehensive study recently published in the journal Transatlantica, he, with the help of three Caltech students who worked on the study during Summer Undergraduate Research Fellowship (SURF) projects, examined more than four thousand successful voting-rights cases around the country as well as Justice Department inquiries and settlements and changes to laws in response to the threat of lawsuits. Over 90 percent, they found, occurred in the covered jurisdictions—indicating, Kousser says, that the coverage scheme was still working very well.

The study found that—even when excluding all of the actions brought under Section 5 of the VRA, and only looking at those that can be brought anywhere in the country—83.2 percent of successful cases originated in covered jurisdictions. This shows, Kousser says, that whatever the coverage formula measured, it still captured the "overwhelming number of instances of proven racial discrimination in elections."

We talked with Kousser about the ruling and his findings—and how this constitutional law scholar made his way to Caltech.


Why do you think Justice Roberts and the other justices in the majority ruled the way they did?

He had a sense that there had been a lot of cases outside of the covered jurisdictions. But if you look at all of the data, you see that the coverage scheme captures 94 percent of all of the cases and other events that took place from 1957 through 2013 and an even larger proportion up to 2006. Suppose that you were a stockbroker, and you could make a decision that was right 94 percent of the time. Your clients would be very, very wealthy. No one would be dissatisfied with you. That's what the congressional coverage scheme did.

I wish very much that I had finished this paper two years earlier and that the data would have been published in a scholarly journal or at least made available in a pre-print by the time that the decision was cooking up. That was a mistake on my part. I should have let it out into the world a little earlier. Sometimes I have a fantasy that if this had been shown to the right justices at the right time, maybe they would have decided differently.


The Court did not rule on the VRA in general—but said that the coverage formula is outdated because voting discrimination is not as bad as it once was. Do you agree?

This is one of the reasons that I looked at the coverage of the California Voting Rights Act (CVRA), passed in 2002. In Section 2 of the National VRA, you have to prove what is called the "totality of the circumstances." You have to prove not only that voting is racially polarized and that there is a kind of election structure used for discrimination, but also show that there is a history of discrimination in the area, that there are often special informal procedures that go against minorities, and a whole series of other things. A Section 2 case is quite difficult to prove.

The CVRA attempted to simplify those circumstances so all you have to show is that there is racially polarized voting, usually shown by a statistical analysis of how various groups voted, and that there is a potentially discriminatory electoral structure, particularly at-large elections for city council, for school board, for community college district, and so on.

The CVRA, in effect, only became operative in 2007 after some preliminary litigation. And in 2007, after the city of Modesto settled a long-running lawsuit, lawyers for the successful plaintiffs presented the city with a bill for about $3 million. This scared jurisdictions throughout California, which were faced with the potential of paying out large amounts of money if they had racially polarized voting. Again and again, you suddenly saw jurisdictions settling short of going to trial and a lot of Hispanics elected to particular boards. This has changed about 100 or 125 local boards throughout California from holding their elections at-large to holding them by sub-districts, which allow geographically segregated minorities to elect candidates of their choice. If you graph that over time, you see a huge jump in the number of successful CVRA cases after 2007. What does this mean? Does it mean that there was suddenly a huge increase in discrimination? No, it means that there was a tool that allowed the discrimination that had previously existed to be legally identified.

If we had that across the country, and it was easier to bring cases, you would expose a lot more discrimination. That's my argument.


Do you think the coverage plan will be restored?

If there were hearings and an assessment of this scheme or any other potentially competing schemes, then Congress might decide on a new coverage scheme. If the bill was passed, it would go back up to the U.S. Supreme Court, and maybe the Court would be more interested in the actual empirical evidence instead of simply guessing what they thought might have existed. But I think right now the possibilities of getting any changes through the Congress are zero.

I would like to see some small changes in the coverage scheme, but they have to be made on the basis of evidence. Just throwing out the whole thing because allegedly it didn't fit anymore is an irrational way to make public policy.


As a professor of history, do you think it is your responsibility to help change policy?

Well, it has been interesting to me from the very beginning. Let me tell you how I got started in voting rights cases. My doctoral dissertation was on the disfranchisement of blacks and poor whites in the South in the late 19th and early 20th centuries. In about 1979, a lawyer who was cooperating with the ACLU [American Civil Liberties Union] in Birmingham, Alabama, called me up—I didn't know who he was—and he said, "Do you have an opinion about whether section 201 of the Alabama constitution of 1901 was adopted with a racially discriminatory purpose?" I said, "I do. I've studied that. I think it was adopted with a racially discriminatory purpose."

Writing expert witness reports and testifying in cases are exactly like what I have always done as a scholar. I have looked at the racially discriminatory effects of laws; I have looked at the racially discriminatory intent of laws. I have examined them by looking at a lot of evidence. I write very long papers for these cases. They are scholarly publications, and whether they relate to something that happened 100 years ago or something that happened five years ago or yesterday doesn't really, in principle, seem to make any difference.


How did you get started as a historian studying politics?

Well, I'm old. I grew up in the South during the period of segregation, but just as it was breaking down. When I was a junior in high school, the sit-ins took place in Nashville, Tennessee, which is where I'm from. I was sympathetic. I never liked segregation. I was always in favor of equal rights.

I had been fascinated by politics from the very beginning. By the time I was 8 or 9 years old, I was reading two newspapers a day. One was a very conservative newspaper, pro-segregation, and the other paper was a liberal newspaper, critical of segregation. They both covered politics. And if you read news stories in each about the same event on the same day, you'd get a completely different slant. It was a wonderful training for a historian. From reading two newspapers that I knew to be biased, one in one direction, the other in another direction, I had to try to figure out what was happening and what I should believe to be fact.


How did you end up at Caltech?

To be very frank, Yale, where I was a graduate student, didn't want me around anymore. When I was there, I started a graduate student senate. I wrote its constitution, and I served as its first president. We were obnoxious. This was in 1967 and 1968, and students were revolting around the country, trying to bring an end to the war in Vietnam, trying to stop racial discrimination, trying to change the world. I had less lofty aims.


Such as?

There was no bathroom for women in the hall of graduate studies where the vast majority of humanities and social sciences classes took place. We made a nonnegotiable demand for a bathroom for women. Yale was embarrassed. Yale granted our request. We did other things. We protested against a rent increase in graduate student married housing. Yale couldn't justify the increase and gave way. We formed a committee to get women equal access to the Yale swimming pools. Yale opened the pool.



In addition to doing research, you are an acclaimed teacher at Caltech—the winner of Caltech highest teaching honor, the Feynman Prize, in 2011. Do you think of yourself as more of a teacher or as a scholar?

I really like to do both. I can't avoid teaching. If you look at my scholarship, a lot of it is really in teaching format. I would like to school Chief Justice Roberts on what he had done wrong and to persuade him, convince him, that he should change his mind on this. A lot of my friends who are at my advanced age have quit teaching, because they can't take it anymore. When the term is over, they are jubilant.

I'm always sad when the term ends, particularly with my Supreme Court class, because the classes are small, so I know each individual student pretty well. I hate to say goodbye to them.


Do any particular students stand out in your mind?

I had one student who took my class in 2000. He was a computer science major. We used to talk a lot. We disagreed about practically everything politically, but he was a very nice and very intelligent guy.

When he finished the class, he decided that he would go to work for Microsoft. He did that for three years. Then he decided he wanted to go to law school, where he did very well; he clerked for an appeals court judge and he clerked for a Supreme Court justice. This spring, he argued his first case before the U.S. Supreme Court. The case that he argued was very complicated. I don't understand it, I don't understand the issues, I don't understand the precedents. It's relatively obscure, and it won't make big headlines. But he did it, and he's promised me that he'll share his impressions of being on that stage and that I can pass them on to current Caltech students. I know that they will find his experience as exciting as I will—a Techer arguing a case before the Supreme Court within 15 years of graduating from college! I can't quit teaching.

Exclude from News Hub: 
News Type: 
Research News

Caltech, JPL Team Up to Take On Big-Data Projects

Acknowledging not only the growing need among scientists and engineers for resources that can help them handle, explore, and analyze big data, but also the complementary strengths of Caltech's Center for Data-Driven Discovery (CD3) and JPL's Center for Data Science and Technology (CDST), the two centers have formally joined forces, creating the Joint Initiative on Data Science and Technology.

A kickoff event for the collaboration was held at the end of April at Caltech's Cahill Center for Astronomy and Astrophysics.

"This is a wonderful example of a deep cooperation between Caltech and JPL that we think will serve to strengthen connections between the campus and the lab," says George Djorgovski, professor of astronomy and director of CD3. "We believe the joint venture will enable and stimulate new projects and give both campus and JPL researchers a new competitive advantage."

Individually, each center strives to provide the intellectual infrastructure, including expertise and advanced computational tools, to help researchers and companies from around the world analyze and interpret the massive amounts of information they now collect using computer technologies, in order to make data-driven discoveries more efficient and timely.

"We've found a lot of synergy across disciplines and an opportunity to apply emerging capabilities in data science to more effectively capture, process, manage, integrate, and analyze data," says Daniel Crichton, manager of the CDST. " JPL's work in building observational systems can be applied to several disciplines from planetary science and Earth science to biological research."

The Caltech center is also interested in this kind of methodology transfer—the application of data tools and techniques developed for one field to another. The CD3 recently collaborated on one such project with Ralph Adolphs, Bren Professor of Psychology and Neuroscience and professor of biology at Caltech. They used tools based on machine learning that were originally developed to analyze data from astronomical sky surveys to process neurobiological data from a study of autism.

"We're getting some promising results," says Djorgovski. "We think this kind of work will help researchers not only publish important papers but also create tools to be used across disciplines. They will be able to say, 'We've got these powerful new tools for knowledge discovery in large and complex data sets. With a combination of big data and novel methodologies, we can do things that we never could before.'"

Both the CD3 and the CDST began operations last fall. The Joint Initiative already has a few projects under way in the areas of Earth science, cancer research, health care informatics, and data visualization.

"Working together, we believe we are strengthening both of our centers," says Djorgovski. "The hope is that we can accumulate experience and solutions and that we will see more and more ways in which we can reuse them to help people make new discoveries. We really do feel like we're one big family, and we are trying to help each other however we can."

Kimm Fesenmaier
Exclude from News Hub: 
News Type: 
In Our Community

Building a Program: Financial Economics

When Jaksa Cvitanic, Caltech's Richard N. Merkin Professor of Mathematical Finance, joined the faculty in 2005, he was a bit of an outlier. Caltech had a strong economics program, including a popular business and economics management option for undergraduates. But Cvitanic's research focus—financial economics, a branch of economics that studies financial markets, firms, and corporate financial decision making—was not well represented. Indeed, there was only one other faculty member doing similar research.

To Cvitanic, this was an opportunity: "The fact that I was somewhat isolated, as far as interest in finance goes, turned out to have positive consequences—it made me spend more time learning new things from my Caltech colleagues and collaborating with them," he says. "Ten years ago, I would not have guessed that I would be carefully reading research papers on neuroeconomics or political science, or that I would coauthor papers that involve experimental economics, as I have with Peter Bossaerts [a visiting associate and formerly Caltech's William D. Hacker Professor of Economics and Management and professor of finance] and Charles Plott [Caltech's William D. Hacker Professor of Economics and Political Science]."

Over the past three decades, financial economics has become an increasingly important academic field. While it borrows many tools and principles from economics, financial economics deals specifically with monetary activities—pricing, money flows, interest rates—rather than the factors governing the relationship of supply and demand. Its practitioners have produced innovations with real-world applications, such as stress tests for financial institutions and mathematical models to determine the pricing of risk and the valuation of future cash flows.

Financing can be done today in much more flexible and efficient ways than 30 years ago, partly due to innovations rooted in financial economics. Concepts such as mortgage securitization, interest rate swaps, and money market funds originated in academia during the 1970s as economists sought to combat the effects of that decade's recession. Recognizing the importance of this area to both academia and society, Caltech is developing a curriculum around the study of finance.

"Finance has long been a career where Caltech undergraduates and graduates have excelled, and we plan to offer the same research-based education that students can receive in other areas," says Jean-Laurent Rosenthal (PhD '88), the Rea A. and Lela G. Axline Professor of Business Economics and chair of the Division of the Humanities and Social Sciences. "Financial economics is important simply because our societies have become very capital intensive."

At the foundation of these efforts is The Ronald and Maxine Linde Institute of Economic and Management Sciences, Caltech's hub for research and education in business and economics, funded in 2011 by a gift of $12.3 million from trustee Ron Linde (MS '62, PhD '64) and his wife, Maxine. Financial economics has ties to diverse fields, including behavioral economics, neuroeconomics, applied mathematics, and computer science. These are fields in which Caltech traditionally excels, providing Linde Institute researchers with unique opportunities for interdisciplinary studies.

At Caltech, researchers take a rigorous analytical and statistical approach to finance. "There is no business school at Caltech, so the finance group is much more of a research area than a teaching place for MBAs and similar career-focused students," says Linde Institute Professor of Finance Richard Roll. Because of this approach, Roll says, students who originally trained in other disciplines, including physics and mathematics, are attracted to financial economics at Caltech.

Many of these former students, now with successful careers in finance, were attendees at the Linde Institute's "Caltech + Finance" inaugural symposium, which took place on May 1, 2015. The symposium, organized by Roll, opened with welcoming remarks from Ron Linde and featured three distinguished alumni speakers—Robert J. Barro (BS '65, physics), the Paul M. Warburg Professor of Economics at Harvard University; Nobel Laureate Robert C. Merton (MS '67, applied mathematics), the School of Management Distinguished Professor of Finance at MIT; and trustee Stephen A. Ross (BS '65, physics), the Franco Modigliani Professor of Financial Economic at MIT—who offered their insights as leaders in business finance and scholars of financial economics. 

Meanwhile, the diverse academic training and interests of Caltech's finance students can steer the faculty into new research areas. Cvitanic, for example, says that an undergraduate student-run "quantitative finance" group interested in algorithmic trading (in which trading is done using algorithms that execute pre-programmed instructions in response to particular variables like stock price and volume) and high-frequency trading (a type of algorithmic trading) coincided with his own interest in the area, and spurred him to write a paper on the topic.

Well-functioning economic systems are essential to successful economic growth. As those systems grow more complex, interconnected, and global, understanding how they function—and how they might function better—is increasingly important. Moreover, when shocks to economic systems occur, such as the Great Recession of 2008–09, all of the tools of scientific and financial innovation are needed to get markets back on track. "Caltech has long trained its students to be great problem solvers, to navigate complex systems, ask the right questions, and find innovative ways to address problems in science and engineering. With the Linde Institute we are making great strides to do the same for financial markets," says Rosenthal. Recent graduates in business, economics, and management have gone on to work in academic, corporate, and government sectors; some have joined investment banks, trading firms, consulting companies, hedge and investment funds, and regulatory agencies, and others have established their own businesses, or earned PhDs, or both.

"We bring the brightest students on the planet to study at Caltech, and we should be empowering their curiosity and talent wherever they lead," Rosenthal says.

Exclude from News Hub: 
News Type: 
Research News

Senior Spotlight: Phoebe Ann

Caltech's class of 2015 is group of smart, creative, and curious individuals. They are analytical thinkers, performers, researchers, engineers, athletes, and leaders who are ready to apply the lessons they have learned from Caltech's rigorous academic environment and the unique experiences they had as part of this close-knit community to pursue future challenges. 

We talked to two of these graduates, Phoebe Ann and Justin Koch, about their years at Caltech and what will come next.

Other graduates share their stories in videos posted on Caltech's Facebook page.

Watch as they and their peers are honored at Caltech's 121st commencement on June 12 at 10 a.m. If you can't be in Pasadena, the ceremony will be live-streamed at You may also follow the action and share your favorite commencement moments on Facebook, Twitter, and Instagram by using #Caltech2015 in your tweets and postings.

Phoebe Ann

Major: Biology and English
House: Lloyd
Hometown: Irvine, California

Why did you originally decide to come to Caltech?

I was attracted by the small class size, and I've found to this day that it is one of Caltech's strongest advantages. Caltech is also extremely supportive of a student's individual endeavors, as demonstrated by the numerous awards and programs that promote independent research, volunteer work, or extracurricular interest projects. The most significant example of this is the Caltech Y, through which I was able to learn how to implement a personal idea or passion into a tangible program that my fellow students and I can all enjoy.

Were you involved in extracurricular activities at Caltech?

My most significant extracurricular activities were implemented through the Caltech Y. My proudest accomplishments were organizing alternative spring break trips to New York for Hurricane Sandy relief and to Costa Rica for community construction. Prior to Caltech, I had never traveled independently, let alone led a group of students to a foreign country. These activities were absolutely crucial to developing myself into an effective community member and future physician.

What were your most memorable experiences?

Aside from my Caltech Y activities, my most memorable experiences were interactions with my fellow Lloydies during freshman year. It was an exciting time of realizing my similarities and differences with others, as well as my ability to function without sleep.

What did you not know about Caltech that you learned after being here?

I did not know how hard Caltech pushed its students. I struggled tremendously upon arriving at Caltech because I was intimidated by all the students who seemed "naturally" intelligent. But Caltech forced me to just shut up and get to work. And when all was said and done, I was able to accomplish so much more than I had ever imagined.

What will you be doing after Caltech?

I will be studying medicine at Feinberg Medical School at Northwestern University in Chicago. After, I would like to be a surgeon or a pediatrician, depending on how well I can maintain a work-life balance.

Any words of advice to incoming students?

Join the Caltech Y! It is critical not only to find a work-life balance outside of the house system, but also to ground your scientific endeavors in a broader purpose: to serve and better your local, national, and international community.

Exclude from News Hub: 
News Type: 
In Our Community

Diversity Retreat at Caltech

In September 2013, Caltech, UC Berkeley, UCLA, and Stanford University founded a new consortium—the California Alliance for Graduate Education and the Professoriate (AGEP)—to support underrepresented minority graduate students in the STEM fields of mathematics, the physical sciences, computer science, and engineering. The Alliance, launched through a grant from the National Science Foundation, was created to address the fact that minority students enter STEM fields in disproportionately low numbers and that, as a group, their progress slows at each step in their academic careers.

This April, Caltech was host to "The Next Generation of Researchers," the Alliance's second annual retreat. The retreats are designed to bring together graduate students, postdoctoral fellows, research scientists, and faculty from the four institutions and national labs in California for mentoring and network-building opportunities.

We recently spoke with Joseph E. Shepherd (PhD '81), dean of graduate studies and the C. L. "Kelly" Johnson Professor of Aeronautics and professor of mechanical engineering, about AGEP, the recent retreat, and Caltech's diversity initiatives.


What was Caltech's motivation for entering into the California Alliance, and what has the program accomplished so far?

Caltech joined the Alliance to encourage underrepresented minorities to pursue academic careers in mathematics, physical science, computer science, and engineering fields. We seek to not only diversify our own campuses (Caltech, Berkeley, Stanford, and UCLA) but also contribute to diversity throughout the nation.

During the first year, the Alliance members identified participants at the four campuses. We have conducted two retreats—the first at Stanford University in 2014 and the second at Caltech. Graduate students, postdoctoral scholars, and faculty gathered at these retreats and learned about opportunities and challenges for underrepresented minority students transitioning from graduate studies to a career as a faculty member.

In 2014, the Alliance established a postdoctoral scholar fellowship program, accepted applications in the fall, and is in the process of finalizing awards for this coming academic year (2015–16). The Alliance has also accepted applications for the mentor-matching program through which graduate students can visit faculty at Alliance institutions to learn about opportunities and faculty careers in specific research areas.


AGEP programs are funded by the NSF. What are they hoping to achieve through these programs?

The AGEP programs were originated at NSF as a response to the recognition of the obstacles that underrepresented minority students faced in graduate education and advancing to faculty careers. These issues are highlighted in "Losing Ground," a 1998 report of a study led by Dr. Shirley Malcom, director of Education and Human Resources Programs of the American Association for the Advancement Science. Dr. Malcolm is a Caltech trustee and was a featured speaker at our 2015 retreat.


What are we doing at Caltech to support underrepresented minority students in the graduate sciences, and has anything at Caltech changed as a result of our involvement in this consortium?

The Caltech Center for Diversity has a number of programs that support various segments of our student population, and we are increasing the number of underrepresented minority postdoctoral scholars at Caltech.

In collaboration with several offices across the campus, we are developing and maintaining a strong network focused on outreach, recruitment, matriculation, and the eventual awarding of degrees to underrepresented minorities in the campus' graduate programs.  

Specifically, the Office of Graduate Studies, the Center for Diversity, and the Center for Teaching, Learning, and Outreach focus on programming that creates access to resources, builds community, and leverages relationships to help to address the challenges highlighted in the AGEP program, including facilitated discussion groups that address issues of inclusion and equality, various graduate student clubs that promote cultural awareness and community education, and an annual "Celebration of Excellence" reception to recognize student successes and the efforts of staff, faculty, and students who promote equity and inclusion on campus.

In addition, the graduate recruitment initiative coordinated by the Office of Graduate Studies works to ensure that the campus is able to recruit at underrepresented minority STEM-focused conferences and research meetings around the United States, and encourages graduate student ambassadorship and provides opportunities for underrepresented minority graduate students to network across national professional communities with similar research and academic interests.


What can we do better?

Encourage greater diversity in graduate admissions by identifying and recruiting underrepresented minority graduate students and ensuring that every student thrives at Caltech. Encourage more of the current underrepresented minority students and postdoctoral scholars at Caltech to take advantage of the professional development opportunities in the Alliance and facilitate their transition to the next stage of their academic careers. Provide more professional development opportunities for all Caltech students and postdoctoral scholars to learn about academic careers.


What was the goal of this year's annual retreat?

One goal was to promote introductions and discussion among students, postdoctoral scholars, and faculty at the Alliance schools. In addition to informal meetings between participants, we held a number of roundtables and panel discussions on topics such as knowing what to expect of grad school, the postdoctoral experience, and, in general, life as a researcher and faculty member. Our retreat highlighted the research between done by faculty, students, and postdoctoral scholars in the Alliance by holding a poster session that enabled the participants to learn about each other's research activity. The retreat participants learned about some of the exciting research being done in protein design at Caltech from the other featured speaker, Steve Mayo (PhD '88), Caltech's William K. Bowes Jr. Leadership Chair of the Division of Biology and Biological Engineering and Bren Professor of Biology and Chemistry.


Who were participants in this year's retreat, and what do you think they gained from the program?

There were a total of 111 attendees: 40 percent were faculty, 42 percent were graduate students, 8 percent postdoctoral scholars, and the remainder were staff members, including some from JPL and Sandia National Laboratory.

The participants were recruited by the Alliance leadership at each university. The student participants gained the opportunity to network with scientists and faculty at other Alliance institutions, learned about academic careers and postdoctoral scholar opportunities, and were able engage in wide-ranging discussions about careers in science. The faculty and staff participants were able to provide information and advice to students as well as learn about prospective postdoctoral scholars and faculty members.

In addition, a total of 18 faculty from Caltech participated out of a total of 43 faculty members who attended from all four Alliance universities. The faculty at Caltech are very positive about this program, and we are encouraged by the high level of participation.


Were the sessions specifically focused on the particular needs of underrepresented groups?

The focus of the Alliance is on helping young people from diverse backgrounds to consider and succeed in academic careers in science. Many of the issues that contribute to success or failure in academic science careers do not depend on the particular perspective or background of a prospective postdoctoral scholar or professor. The pathway to the professoriate and the mechanics of succeeding in an academic career are far from obvious, particularly for students with disadvantaged backgrounds as well as those who are the first in their family to obtain a college degree or consider a career in science. One of the important roles of the Alliance retreat is in providing information about the many career aspects to which our student participants are exposed early enough in their careers so that it may make a difference. 

Kathy Svitil
Exclude from News Hub: 
News Type: 
In Our Community

Behavior Matters: Redesigning the Clinical Trial

When a new type of drug or therapy is discovered, double-blind randomized controlled trials (DBRCTs) are the gold standard for evaluating them. These trials, which have been used for years, were designed to determine the true efficacy of a treatment free from patient or doctor bias, but they do not factor in the effects that patient behaviors, such as diet and lifestyle choices, can have on the tested treatment.

A recent meta-analysis of six such clinical trials, led by Caltech's Erik Snowberg, professor of economics and political science, and his colleagues Sylvain Chassang from Princeton University and Ben Seymour from Cambridge University, shows that behavior can have a serious impact on the effectiveness of a treatment—and that the currently used DBRCT procedures may not be able to assess the effects of behavior on the treatment. To solve this, the researchers propose a new trial design, called a two-by-two trial, that can account for behavior–treatment interactions.

The study was published online on June 10 in the journal PLOS ONE.

Patients behave in different ways during a trial. These behaviors can directly relate to the trial—for example, one patient who believes in the drug may religiously stick to his or her treatment regimen while someone more skeptical might skip a few doses. The behaviors may also simply relate to how the person acts in general, such as preferences in diet, exercise, and social engagement. And in the design of today's standard trials, these behaviors are not accounted for, Snowberg says.

For example, a DBRCT might randomly assign patients to one of two groups: an experimental group that receives the new treatment and a control group that does not. As the trial is double-blinded, neither the subjects nor their doctors know who falls into which group. This is intended to reduce bias from the behavior and beliefs of the patient and the doctor; the thinking is that because patients have not been specifically selected for treatment, any effects on health outcomes must be solely due to the treatment or lack of treatment.

Although the patients do not know whether they have received the treatment, they do know their probability of getting the treatment—in this case, 50 percent. And that 50 percent likelihood of getting the new treatment might not be enough to encourage a patient to change behaviors that could influence the efficacy of the drug under study, Snowberg says. For example, if you really want to lose weight and know you have a high probability—say 70 percent chance—of being in the experimental group for a new weight loss drug, you may be more likely to take the drug as directed and to make other healthy lifestyle choices that can contribute to weight loss. As a result, you might lose more weight, boosting the apparent effectiveness of the drug.

However, if you know you only have a 30 percent chance of being in the experimental group, you might be less motivated to both take the drug as directed and to make those other changes. As a result, you might lose less weight—even if you are in the treatment group—and the same drug would seem less effective.

"Most medical research just wants to know if a drug will work or not. We wanted to go a step further, designing new trials that would take into account the way people behave. As social scientists, we naturally turned to the mathematical tools of formal social science to do this," Snowberg says.

Snowberg and his colleagues found that with a new trial design, the two-by-two trial, they can tease out the effects of behavior and the interaction of behavior and treatment, as well as the effects of treatment alone. The new trial, which still randomizes treatment, also randomizes the probability of treatment—which can change a patient's behavior.

In a two-by-two trial, instead of patients first being assigned to either the experimental or control groups, they are randomly assigned to either a "high probability of treatment" group or a "low probability of treatment" group. The patients in the high probability group are then randomly assigned to either the treatment or the control group, giving them a 70 percent chance of receiving the treatment. Patients in the low probability group are also randomly assigned to treatment or control; their likelihood of receiving the treatment is 30 percent. The patients are then informed of their probability of treatment.

By randomizing both the treatment and the probability of treatment, medical researchers can quantify the effects of treatment, the effects of behavior, and the effects of the interaction between treatment and behavior. Determining each, Snowberg says, is essential for understanding the overall efficacy of treatment.

Credit: Sylvain Chassang, Princeton University

"It's a very small change to the design of the trial, but it's important. The effect of a treatment has these two constituent parts: pure treatment effect and the treatment–behavior interaction. Standard blind trials just randomize the likelihood of treatment, so you can't see this interaction. Although you can't just tell someone to randomize their behavior, we found a way that you can randomize the probability that a patient will get something that will change their behavior."

Because it is difficult to implement new trial design changes in active trials, Snowberg and his colleagues wanted to first test their idea with a meta-analysis of data from previous clinical trials. They developed a way to test this idea by coming up with a new mathematical formula that can be used to analyze DBRCT data. The formula, which teases out the health outcomes resulting from treatment alone as well as outcomes resulting from an interaction between treatment and behavior, was then used to statistically analyze six previous DBRCTs that had tested the efficacy of two antidepressant drugs, imipramine (a tricyclic antidepressant also known as Tofranil) and paroxetine (a selective serotonin reuptake inhibitor sold as Paxil).

First, the researchers wanted to see if there was evidence that patients behave differently when they have a high probability of treatment versus when they have a low probability of treatment. The previous trials recorded how many patients dropped out of the study, so this was the behavior that Snowberg and his colleagues analyzed. They found that in trials where patients happened to have a relatively high probability of treatment—near 70 percent—the dropout rate was significantly lower than in other trials with patients who had a lower probability of treatment, around 50 percent.

Although the team did not have any specific behaviors to analyze, other than dropping out of the study, they also wanted to determine if behavior in general could have added to the effect of the treatments. Using their statistical techniques, they determined that imipramine seemed to have a pure treatment effect, but no effect from the interaction between treatment and behavior—that is, the drug seemed to work fine, regardless of any behavioral differences that may have been present.

However, after their analysis, they determined that paroxetine seemed to have no effect from the treatment alone or behavior alone. However, an interaction between the treatment and behavior did effectively decrease depression. Because this was a previously performed study, the researchers cannot know which specific behavior was responsible for the interaction, but with the mathematical formula, they can tell that this behavior was necessary for the drug to be effective.

In their paper, Snowberg and his colleagues speculate how a situation like this might come about. "Maybe there is a drug, for instance, that makes people feel better in social situations, and if you're in the high probability group, then maybe you'd be more willing to go out to parties to see if the drug helps you talk to people," Snowberg explains. "Your behavior drives you to go to the party, and once you're at the party, the drug helps you feel comfortable talking to people. That would be an example of an interaction effect; you couldn't get that if people just took this drug alone at home."

Although this specific example is just speculation, Snowberg says that the team's actual results reveal that there is some behavior or set of behaviors that interact with paroxetine to effectively treat depression—and without this behavior, the drug appears to be ineffective.

"Normally what you get when you run a standard blind trial is some sort of mishmash of the treatment effect and the treatment-behavior interaction effect. But, knowing the full interaction effect is important. Our work indicates that clinical trials underestimate the efficacy of a drug where behavior matters," Snowberg says. "It may be the case that 50 percent probability isn't high enough for people to change any of their behaviors, especially if it's a really uncertain new treatment. Then it's just going to look like the drug doesn't work, and that isn't the case."

Because the meta-analysis supported the team's hypothesis—that the interaction between treatment and behavior can have an effect on health outcomes—the next step is incorporating these new ideas into an active clinical trial. Snowberg says that the best fit would be a drug trial for a condition, such as a mental health disorder or an addiction, that is known to be associated with behavior. At the very least, he says, he hopes that these results will lead the medical research community to a conversation about ways to improve the DBRCT and move past the current "gold standard."

These results are published in a paper titled "Accounting for Behavior in Treatment Effects: New Applications for Blind Trials." Cayley Bowles, a student in the UCLA/Caltech MD/PhD program, was also a coauthor on the paper. The work was supported by funding to Snowberg and Chassang from the National Science Foundation.

Exclude from News Hub: 
News Type: 
Research News
Tuesday, May 26, 2015 to Friday, May 29, 2015
Center for Student Services 360 (Workshop Space) – Center for Student Services

CTLO Presents Ed Talk Week 2015

Ditch Day? It’s Today, Frosh!

Today we celebrate Ditch Day, one of Caltech's oldest traditions. During this annual spring rite—the timing of which is kept secret until the last minute—seniors ditch their classes and vanish from campus. Before they go, however, they leave behind complex, carefully planned out puzzles and challenges—known as "stacks"—designed to occupy the underclassmen and prevent them from wreaking havoc on the seniors' unoccupied rooms.

Follow the action on Caltech's Facebook, Twitter, and Instagram pages as the undergraduates tackle the puzzles left for them to solve around campus. Join the conversation by sharing your favorite Ditch Day memories and using #CaltechDitchDay in your tweets and postings.

Frontpage Title: 
Ditch Day 2015
Exclude from News Hub: 
News Type: 
In Our Community


Subscribe to RSS - HSS