Unexpected Findings Change the Picture of Sulfur on the Early Earth

Scientists believe that until about 2.4 billion years ago there was little oxygen in the atmosphere—an idea that has important implications for the evolution of life on Earth. Evidence in support of this hypothesis comes from studies of sulfur isotopes preserved in the rock record. But the sulfur isotope story has been uncertain because of the lack of key information that has now been provided by a new analytical technique developed by a team of Caltech geologists and geochemists. The story that new information reveals, however, is not what most scientists had expected.

"Our new technique is 1,000 times more sensitive for making sulfur isotope measurements," says Jess Adkins, professor of geochemistry and global environmental science at Caltech. "We used it to make measurements of sulfate groups dissolved in carbonate minerals deposited in the ocean more than 2.4 billion years ago, and those measurements show that we have been thinking about this part of the sulfur cycle and sulfur isotopes incorrectly."

The team describes their results in the November 7 issue of the journal Science. The lead author on the paper is Guillaume Paris, an assistant research scientist at Caltech.

Nearly 15 years ago, a team of geochemists led by researchers at UC San Diego discovered there was something peculiar about the sulfur isotope content of rocks from the Archean era, an interval that lasted from 3.8 billion to about 2.4 billion years ago. In those ancient rocks, the geologists were analyzing the abundances of stable isotopes of sulfur.

When sulfur is involved in a reaction—such as microbial sulfate reduction, a way for microbes to eat organic compounds in the absence of oxygen—its isotopes are usually fractionated, or separated, from one another in proportion to their differences in mass. That is, 34S gets fractionated from 32S about twice as much as 33S gets fractionated from 32S. This process is called mass-dependent fractionation, and, scientists have found that it dominates in virtually all sulfur processes operating on Earth's surface for the last 2.4 billion years.

However, in older rocks from the Archean era (i.e., older than 2.4 billion years), the relative abundances of sulfur isotopes do not follow the same mass-related pattern, but instead show relative enrichments or deficiencies of 33S relative to 34S. They are said to be the product of mass-independent fractionation (MIF).

The widely accepted explanation for the occurrence of MIF is as follows. Billions of years ago, volcanism was extremely active on Earth, and all those volcanoes spewed sulfur dioxide high into the atmosphere. At that time, oxygen existed at very low levels in the atmosphere, and therefore ozone, which is produced when ultraviolet radiation strikes oxygen, was also lacking. Today, ozone prevents ultraviolet light from reaching sulfur dioxide with the energy needed to fractionate sulfur, but on the early Earth, that was not the case, and MIF is the result. Researchers have been able to reproduce this effect in the lab by shining lasers onto sulfur dioxide and producing MIF.

Geologists have also measured the sulfur isotopic composition of sedimentary rocks dating to the Archean era, and found that sulfides—sulfur-bearing compounds such as pyrite (FeS2)—include more 33S than would be expected based on normal mass-dependent processes. But if those minerals are enriched in 33S, other minerals must be correspondingly lacking in the isotope. According to the leading hypothesis, those 33S-deficient minerals should be sulfates—oxidized sulfur-bearing compounds—that were deposited in the Archean ocean.

"That idea was put forward on the basis of experiment. To test the hypothesis, you'd need to check the isotope ratios in sulfate salts (minerals such as gypsum), but those don't really exist in the Archean rock record since there was very little oxygen around," explains Woody Fischer, professor of geobiology at Caltech and a coauthor on the new paper. "But there are trace amounts of sulfate that got trapped in carbonate minerals in seawater."

However, because those sulfates are present in such small amounts, no one has been able to measure well their isotopic composition. But using a device known as a multicollector inductively-coupled mass spectrometer to precisely measure multiple sulfur isotopes, Adkins and his colleague Alex Sessions, a professor of geobiology, developed a method that is sensitive enough to measure the isotopic composition of about 10 nanomoles of sulfate in just a few tens of milligrams of carbonate material.

The authors used the method to measure the sulfate content of carbonates from an ancient carbonate platform preserved in present-day South Africa, an ancient version of the depositional environments found in the Bahamas today. Analyzing the samples, which spanned 70 million years and a variety of marine environments, the researchers found exactly the opposite of what had been predicted: the sulfates were actually enriched by 33S rather than lacking in it.

"Now, finally, we're looking at this sulfur cycle and the sulfur isotopes correctly," Adkins says.

What does this mean for the atmospheric conditions of the early Earth? "Our findings underscore that the oxygen concentrations in the early atmosphere could have been incredibly low," Fischer says.

Knowledge of sulfate isotopes changes how we understand the role of biology in the sulfur cycle, he adds. Indeed, the fact that the sulfates from this time period have the same isotopic composition as sulfide minerals suggests that the sulfides may be the product of microbial processes that reduced seawater sulfate to sulfide (which later precipitated in sediments in the form of pyrite). Previously, scientists thought that all of the isotope fractionation could be explained by inorganic processes alone.

In a second paper also in the November 7 issue of Science, Paris, Adkins, Sessions, and colleagues from a number of institutions around the world report on related work in which they measured the sulfates in Indonesia's Lake Matano, a low-sulfate analog of the Archean ocean.

At about 100 meters depth, the bacterial communities in Lake Matano begin consuming sulfate rather than oxygen, as do most microbial communities, yielding sulfide. The researchers measured the sulfur isotopes within the sulfates and sulfides in the lake water and sediments and found that despite the low concentrations of sulfate, a lot of mass-dependent fractionation was taking place. The researchers used the data to build a model of the lake's sulfur cycle that could produce the measured fractionation, and when they applied their model to constrain the range of concentrations of sulfate in the Archean ocean, they found that the concentration was likely less than 2.5 micromolar, 10,000 times lower than the modern ocean.

"At such low concentration, all the isotopic variability starts to fit," says Adkins. "With these two papers, we were able to come at the same problem in two ways—by measuring the rocks dating from the Archean and by looking at a model system today that doesn't have much sulfate—and they point toward the same answer: the sulfate concentration was very low in the Archean ocean."

Samuel M. Webb of the Stanford Synchrotron Radiation Lightsource is also an author on the paper, "Neoarchean carbonate-associated sulfate records positive Δ33S anomalies." The work was supported by funding from the National Science Foundation's Division of Earth Sciences, the Henry and Camille Dreyfus Foundation's Postdoctoral Program in Environmental Chemistry, and the David and Lucile Packard Foundation.

Paris is also a co-lead author on the second paper, "Sulfate was a trace constituent of Archean seawater." Additional authors on that paper are Sean Crowe and CarriAyne Jones of the University of British Columbia and the University of Southern Denmark; Sergei Katsev of the University of Minnesota Duluth; Sang-Tae Kim of McMaster University; Aubrey Zerkle of the University of St. Andrews; Sulung Nomosatryo of the Indonesian Institute of Sciences; David Fowle of the University of Kansas; James Farquhar of the University of Maryland, College Park; and Donald Canfield of the University of Southern Denmark. Funding was provided by an Agouron Institute Geobiology Fellowship and a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship, as well as by the Danish National Research Foundation and the European Research Council.

Exclude from News Hub: 
Wednesday, October 29, 2014
Center for Student Services 360 (Workshop Space) – Center for Student Services

Meet the Outreach Guys: James & Julius

Oceanographer Andrew Thompson Wins Prestigious Fellowship

Caltech oceanographer Andrew Thompson, who uses autonomous underwater instruments and numerical models to study ocean currents and eddies and their impact on Earth's ecology and climate, has been awarded a Packard Fellowship for Science and Engineering. Packard Fellowships are awarded annually by the David and Lucile Packard Foundation to the nation's "most innovative early-career scientists and engineers" to provide them with "flexible funding and the freedom to take risks and explore new frontiers in their fields," according to the foundation.

Along with this year's 17 other fellows, Thompson, an assistant professor of environmental science and engineering, will receive a grant of $875,000 distributed over five years, to pursue his research.

As is the case for other Packard Fellows, Thompson was surprised by his selection. He recalls being called on a recent Tuesday morning into a meeting with Ken Farley, W. M. Keck Foundation Professor of Geochemistry. Farley had chaired Thompson's division, Geological and Planetary Sciences, up until September 1, when Fletcher Jones Professor of Geology John Grotzinger took over.

"Ken asked to meet with me in the division chair's office. This was already a little odd, because John had already taken over, but I did not think too much of it at the time," Thompson says. "Five minutes into our conversation, the phone rang, and when it was for me, I knew that something was up. Ken had nominated me in the spring so he was the one who delivered the news. I was thrilled. I had to go for a walk immediately after to calm down. It was really an honor to represent Caltech as a nominee."

"This was a great way to complete my term as chair—to have played a part in successfully nominating Andy for this prestigious and valuable award, and to get the chance to see his surprise and happiness when the foundation told him," Farley says.

Although he's only just heard the news, Thompson already has plans for the grant. "Part of the funds will be used to support our work with autonomous ocean instruments—gliders—that allow us to observe remote or dynamic parts of the ocean over long periods of time," he says. "These tools will be used to explore the coupling between ocean circulation, ecosystem dynamics, and biogeochemical cycling in the upper ocean, processes that are difficult to observe using traditional ship-based techniques."

Thompson joins 23 other current Caltech faculty who have been named Packard Fellows since the program's inception in 1988. To date, the Packard Foundation, a private family foundation created in 1964 Hewlett-Packard Company cofounder David Packard and his wife, Lucile Packard, has awarded $346 million to support 523 scientists from 52 national universities. Each year, participating universities are invited to nominate two faculty members for consideration by the 12-member Fellowship Advisory Panel of internationally recognized scientists and engineers, which recommends nominees for approval by the Packard Foundation Board of Trustees.

Kathy Svitil
Frontpage Title: 
Oceanographer Awarded Prestigious Packard Fellowship
Exclude from News Hub: 
News Type: 
In Our Community
Wednesday, October 29, 2014
Avery Courtyard – Avery House

Fall Family Festival

Getting To Know Super-Earths

"If you have a coin and flip it just once, what does that tell you about the odds of heads versus tails?" asks Heather Knutson, assistant professor of planetary science at Caltech. "It tells you almost nothing. It's the same with planetary systems," she says.

For as long as astronomers have been looking to the skies, we have had just one planetary system—our own—to study in depth. That means we have only gotten to know a handful of possible outcomes of the planet formation process, and we cannot say much about whether the features observed in our solar system are common or rare when compared to planetary systems orbiting other stars.

That is beginning to change. NASA's Kepler spacecraft, which launched on a planet-hunting mission in 2009, searched one small patch of the sky and identified more than 4,000 candidate exoplanets—worlds orbiting stars other than our own sun. It was the first survey to provide a definitive look at the relative frequency of planets as a function of size. That is, to ask, 'How common are gas giant planets, like Jupiter, compared to planets that look a lot more like Earth?'

Kepler's results suggest that small planets are much more common than big ones. Interestingly, the most common planets are those that are just a bit larger than Earth but smaller than Neptune—the so-called super-Earths.

However, despite being common in our local corner of the galaxy, there are no examples of super-Earths in our own solar system. Our current observations tell us something about the sizes and orbits of these newly discovered worlds, but we have very little insight into their compositions.

"We are left with this situation where super-Earths appear to be the most common kind of exoplanet in the galaxy, but we don't know what they're made of," says Knutson.

There are a number of possibilities. A super-Earth could be just that: a bigger version of Earth—mostly rocky, with an atmosphere. Then again, it could be a mini-Neptune, with a large rock-ice core encapsulated in a thick envelope of hydrogen and helium. Or it could be a water world—a rocky core enveloped in a blanket of water and perhaps an atmosphere composed of steam (depending on the temperature of the planet).

"It's really interesting to think about these planets because they could have so many different compositions, and knowing their composition will tell us a lot about how planets form," Knutson says. For example, because planets in this size range acquire most of their mass by pulling in and incorporating solid material, water worlds initially must have formed far away from their parent stars, where temperatures were cold enough for water to freeze. Most of the super-Earths known today orbit very close to their host stars. If water-dominated super-Earths turn out to be common, it would indicate that most of these worlds did not form in their present locations but instead migrated in from more distant orbits.

In addition to thinking about exoplanets, Knutson and her students use space-based observatories like the Hubble and Spitzer Space Telescopes to learn more about the distant worlds. For example, the researchers analyze the starlight that filters through a planet's atmosphere as it passes in front of its star to learn about the composition of the atmosphere. Molecular species present in the planet's atmosphere absorb light at particular wavelengths. Therefore, by using Hubble and Spitzer to view the planet and its atmosphere at a number of different wavelengths, the researchers can determine which chemical compounds are present.

To date, nearly two dozen planets have been characterized with this technique. These observations have shown that the enormous gas giant exoplanets known as hot-Jupiters have water, carbon monoxide, hydrogen, helium—and potentially carbon dioxide and methane—in their atmospheres.

However, right now super-Earths are the hot topic. Unfortunately, although hundreds of super-Earths have been found, only a few are close enough and orbiting bright enough stars for astronomers to study in this way using currently available telescopes.

The first super-Earth that the astronomical community targeted for atmospheric studies was GJ 1214b, in the constellation Ophiuchus. Based on its average density (determined from its mass and radius), it was clear from the start that the planet was not entirely rocky. However, its density could be equally well matched by either a primarily water composition or a Neptune-like composition with a rocky core surrounded by a thick gas envelope. Information about the atmosphere could help astronomers determine which one it was: a mini-Neptune's atmosphere should contain lots of molecular hydrogen, while a water world's atmosphere should be water dominated.

GJ 1214b has been a popular target for the Hubble Space Telescope since its discovery in 2009. Disappointingly, after a first Hubble campaign led by researchers at the Harvard-Smithsonian Center for Astrophysics, the spectrum came back featureless—there were no chemical signatures in the atmosphere. After a second set of more sensitive observations led by researchers at the University of Chicago returned the same result, it became clear that a high cloud deck must be masking the signature of absorption from the planet's atmosphere.

"It's exciting to know that there are clouds on the planet, but the clouds are getting in the way of what we actually wanted to know, which is what is this super-Earth made of?" explains Knutson.

Now Knutson's team has studied a second super-Earth: HD 97658b, in the constellation Leo. They report their findings in the current issue of The Astrophysical Journal. The researchers used Hubble to measure the decrease in light when the planet passed in front of its parent star over a range of infrared wavelengths in order to detect small changes caused by water vapor in the planet's atmosphere.

However, again the data came back featureless. One explanation is that HD 97658b is also enveloped in clouds. However, Knutson says, it is also possible that the planet has an atmosphere that is lacking hydrogen. Because such an atmosphere could be very compact, it would make the telltale fingerprints of water vapor and other molecules very small and hard to detect. "Our data are not precise enough to tell whether it's clouds or the absence of hydrogen in the atmosphere that's causing the spectrum to be flat," she says. "This was just a quick first look to give us a rough idea of what the atmosphere looked like. Over the next year, we will use Hubble to observe this planet again in more detail. We hope those observations will provide a clear answer to the current mystery."

It appears that clouds are going to continue to pose a real challenge in studies of super-Earths, so Knutson and other researchers are working to understand the composition of the clouds around these planets and the conditions under which they form. The hope is that they will get to the point where they can predict which worlds will be shrouded in clouds. "If we can then target planets that we think should be cloud-free, that will help us make optimal use of Hubble's time," she says.

Looking to the future, Knutson says there is only one more known super-Earth that can be targeted for atmospheric studies with current telescopes. But new surveys, such as NASA's extended Kepler K2 mission and the Transiting Exoplanet Survey Satellite (TESS), slated for launch in 2017, should identify a large sample of new targets.

Of course, she says, astronomers would love to study exoplanets the size of Earth, but these worlds are just a bit too small and too difficult to observe with Hubble and Spitzer. NASA's James Webb Space Telescope, which is scheduled for launch in 2018, will provide the first opportunity to study more Earth-like worlds. "Super-Earths are at the edge of what we can study right now," Knutson says. "But super-Earths are a good consolation prize—they're interesting in their own right, and they give us a chance to explore new kinds of worlds with no analog in our own solar system."

Kimm Fesenmaier
Exclude from News Hub: 
News Type: 
Research News

Rock-Dwelling Microbes Remove Methane from Deep Sea

Methane-breathing microbes that inhabit rocky mounds on the seafloor could be preventing large volumes of the potent greenhouse gas from entering the oceans and reaching the atmosphere, according to a new study by Caltech researchers.

The rock-dwelling microbes, which are detailed in the Oct. 14 issue of Nature Communications, represent a previously unrecognized biological sink for methane and as a result could reshape scientists' understanding of where this greenhouse gas is being consumed in subseafloor habitats, says Professor of Geobiology Victoria Orphan, who led the study.

"Methane is a much more powerful greenhouse gas than carbon dioxide, so tracing its flow through the environment is really a priority for climate models and for understanding the carbon cycle," Orphan says.

Orphan's team has been studying methane-breathing marine microorganisms for nearly 20 years. The microbes they focus on survive without oxygen, relying instead on sulfate ions present in seawater for their energy needs. Previous work by Orphan's team helped show that the methane-breathing system is actually made up of two different kinds of microorganisms that work closely with one another. One of the partners, dubbed "ANME" for "ANaerobic MEthanotrophs," belongs to a type of ancient single-celled creatures called the archaea.

Through a mechanism that is still unclear, ANME work closely with bacteria to consume methane using sulfate from seawater. "Without this biological process, much of that methane would enter the water column, and the escape rates into the atmosphere would probably be quite a bit higher," says study first author Jeffrey Marlow, a geobiology graduate student in Orphan's lab.

Until now, however, the activity of ANME and their bacterial partners had been primarily studied in sediments located in cold seeps, areas on the ocean bottom where methane is escaping from subseafloor sources into the water above. The new study marks the first time they have been observed to oxidize methane inside carbonate mounds, huge rocky outcroppings of calcium carbonate that can rise hundreds of feet above the seafloor.

If the microbes are living inside the mounds themselves, then the distribution of methane consumption is significantly different from what was previously thought. "Methane-derived carbonates represent a large volume within many seep systems, and finding active methane-consuming archaea and bacteria in the interior of these carbonate rocks extends the known habitat for methane-consuming microorganisms beyond the relatively thin layer of sediment that may overlay a carbonate mound," Marlow says.

Orphan and her team detected evidence of methane-breathing microbes in carbonate rocks collected from three cold seeps around the world: one at a tectonic plate boundary near Costa Rica; another in the Eel River basin off the coast of northwestern California; and at Hydrate Ridge, off the Oregon coast. The team used manned and robotic submersibles to collect the rock samples from depths ranging from 2,000 feet to nearly half a mile below the surface.

Marlow has vivid memories of being a passenger in the submersible Alvin during one of those rock-retrieval missions. "As you sink down, the water outside your window goes from bright blue surface water to darker turquoise and navy blue and all these shades of blue that you didn't know existed until it gets completely dark," Marlow recalls. "And then you start seeing flashes of light because the vehicle is perturbing the water column and exciting florescent organisms. When you finally get to the seafloor, Alvin's exterior lights turn on, and this crazy alien world is illuminated in front of you."

The carbonate mounds that the subs visited often serve as foundations for coral and sponges, and are home to rockfishes, clams, crabs, and other aquatic life. For their study, the team members gathered rock samples not only from carbonate mounds located within active cold seeps, where methane could be seen escaping from the seafloor into the water, but also from mounds that appeared to be dormant.

Once the carbonate rocks were collected, they were transported back to the surface and rushed into a cold room aboard a research ship. In the cold room, which was maintained at the temperature of the deep sea, the team cracked open the carbonates in order to gather material from their interiors. "We wanted to make sure we weren't just sampling material from the surface of the rocks," Marlow says.

Using a microscope, the team confirmed that ANME and sulfate-reducing bacterial cells were indeed present inside the carbonate rocks, and genetic analysis of their DNA showed that they were related to methanotrophs that had previously been characterized in seafloor sediment. The scientists also used a technique that involved radiolabeled 14C-methane tracer gas to quantify the rates of methane consumption in the carbonate rocks and sediments from both the actively seeping sites and the areas appearing to be inactive. They found that the rock-dwelling methanotrophs consumed methane at a slower rate than their sediment-dwelling cousins.

"The carbonate-based microbes breathed methane at roughly one-third the rate of those gathered from sediments near active seep sites," Marlow says. "However, because there are likely many more microbes living in carbonate mounds than in sediments, their contributions to methane removal from the environment may be more significant."

The rock samples that were harvested near supposedly dormant cold seeps also harbored microbial communities capable of consuming methane. "We were surprised to find that these marine microorganisms are still viable and, if exposed to methane, can continue to oxidize this greenhouse gas long after surface expressions of seepage have vanished." Orphan says.

Along with Orphan and Marlow, additional coauthors on the paper, "Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea," include former Caltech associate research scientist Joshua Steele, now at the Southern California Coastal Water Research Project; Wiebke Ziebis, an associate professor at the University of Southern California; Andrew Thurber, an assistant professor at Oregon State University; and Lisa Levin, a professor at the Scripps Institution of Oceanography. Funding for the study was provided by the National Science Foundation; NASA's Astrobiology Institute; the Gordon and Betty Moore Foundation Marine Microbiology Initiative grant; and the National Research Council of the National Academies. 

Written by Ker Than

Ker Than
Exclude from News Hub: 
Friday, October 17, 2014
Center for Student Services 360 (Workshop Space) – Center for Student Services

TA Training: fall make-up session

Tuesday, October 7, 2014
Red Door Cafe – Winnett Student Center

Samba and Salsa Exhibition

Tuesday, October 7, 2014
Center for Student Services 360 (Workshop Space) – Center for Student Services

Thirty Meter Telescope Groundbreaking and Blessing

Tuesday, October 7, 2014
Center for Student Services 360 (Workshop Space) – Center for Student Services

Caltech Peer Tutor Training


Subscribe to RSS - GPS