Caltech Researchers Find Ancient Climate Cycles Recorded in Mars Rocks

PASADENA, Calif.-- Researchers at the California Institute of Technology (Caltech) and their colleagues have found evidence of ancient climate change on Mars caused by regular variation in the planet's tilt, or obliquity. On Earth, similar "astronomical forcing" of climate drives ice-age cycles.

Using stereo topographic maps obtained by processing data from the high-resolution camera onboard NASA's Mars Reconnaissance Orbiter, the Caltech scientists, led by graduate student Kevin Lewis and Oded Aharonson, associate professor of planetary science, along with John Grotzinger, the Fletcher Jones Professor of Geology, identified and measured layered rock outcrops within four craters in the planet's Arabia Terra region. The layering in different outcrops occurs at scales ranging from a few meters to tens of meters, but at each location the layers all have similar thicknesses and exhibit similar features.

Based on a pattern of layers within layers measured at one location, known as Becquerel crater, the scientists propose that each layer was formed over a period of about 100,000 years and that these layers were produced by the same cyclical climate changes.

In addition, every 10 layers were bundled together into larger units, which were laid down over an approximately one-million-year period; in the Becquerel crater, the 10-layer pattern is repeated at least 10 times. This one-million-year cycle corresponds to a known pattern of change in Mars's obliquity caused by the dynamics of the solar system.

"Due to the scale of the layers, small variations in Mars's orbit are the best candidate for the implied climate changes. These are the very same changes that have been shown to set the pacing of ice ages on the Earth and can also lead to cyclic layering of sediments," says Lewis, the first author of a paper about the work published in this week's issue of Science.

Sequences of cyclic sedimentary rock layers exposed in an unnamed crater in Arabia Terra, Mars.
Credit: Topograpy, Caltech; HiRISE Images, NASA/JPL/University of Arizona

The tilt of Earth on its axis varies between 22.1 and 24.5 degrees over a 41,000-year period. The tilt itself is responsible for seasonal variation in climate, because the portion of the Earth that is tipped toward the sun--and that receives more sunlight hours during a day--gradually changes throughout the year. During phases of lower obliquity, polar regions are less subject to seasonal variations, leading to periods of glaciation.

Mars's tilt varies by tens of degrees over a 100,000-year cycle, producing even more dramatic variation. When the obliquity is low, the poles are the coldest places on the planet, while the sun is located near the equator all the time. This could cause volatiles in the atmosphere, like water and carbon dioxide, to migrate poleward, where they'd be locked up as ice.

When the obliquity is higher, the poles get relatively more sunlight, and those materials would migrate away. "That affects the volatiles budget. If you move carbon dioxide away from the poles, the atmospheric pressure would increase, which may cause a difference in the ability of winds to transport and deposit sand," Aharonson says. This is one effect that could change the rate of deposition of layers such as those seen by the researchers in the four craters.

Another effect of the changing tilt would be a change in the stability of surface water, which alters the ability of sand grains to stick together and cement in order to form the rock layers.

"The whole climate system would be different," Aharonson says.

However, such large changes in climate would influence a variety of geologic processes on the surface. While the researchers cannot tie the formation of the rhythmic bedding on Mars to any particular geologic process, "a strength of the paper is that we can draw conclusions without having to specify the precise depositional process," Aharonson says.

"This study gives us a hint of how the ancient climate of Mars operated, and shows a much more predictable and regular environment than you would guess from other geologic features that indicate catastrophic floods, volcanic eruptions, and impact events," Lewis adds. "More work will be required to understand the full extent of the information contained within these natural geologic archives," he says.

"One of the fun things about this project for me is that we were able to use techniques on Mars that are the bread and butter of studies of stratigraphy on Earth," says Aharonson. "We substituted a high-resolution camera in orbit around Mars and stereo processing for a geologist's Brunton Compass and mapboard, and were able to derive the same quantitative information on the same scale. This enabled conclusions that have qualitative meaning similar to those we chase on Earth."

The paper, "Quasi-Periodic Bedding in the Sedimentary Rock Record of Mars," will be published in the December 5 issue of Science. The work was supported by NASA's Mars Data Analysis Program and the NASA Earth and Space Science Fellowship program.

Kathy Svitil

Potential for Large Earthquake Off the Coast of Sumatra Remains Large, Says Caltech-Led Team of Scientists

Recent seismic activity not enough to release strain in the area's subduction zone, the researchers report in the journal Nature

PASADENA, Calif.--The subduction zone that brought us the 2004 Sumatra-Andaman earthquake and tsunami is ripe for yet another large event, despite a sequence of quakes that occurred in the Mentawai Islands area in 2007, according to a group of earthquake researchers led by scientists from the Tectonics Observatory at the California Institute of Technology (Caltech).

"From what we saw," says geologist Jean-Philippe Avouac, director of the Tectonics Observatory and one of the paper's lead authors, "we can say with some confidence that we're probably not done with large earthquakes in Sumatra."

Their findings were published in a letter in the December 4 issue of the journal Nature.

The devastating magnitude 9.2 earthquake that occurred off the western coast of Sumatra on December 26, 2004-the earthquake that spawned a lethal tsunami throughout the Indian Ocean-took place in a subduction zone, an area where one tectonic plate dips under another, forming a quake-prone region.

It is that subduction zone that drew the interest of the Caltech-led team. Seismic activity has continued in the region since the 2004 event, they knew. But have the most recent earthquakes been able to relieve the previous centuries of built-up seismic stress?

Yes . . . and no. Take, for instance, an area just south of the 2004 quake, where a magnitude 8.6 earthquake hit in 2005. (That same area had also been the site of a major earthquake in 1861.) The 2005 quake, says Avouac, did a good job of "unzipping" the stuck area in that patch of the zone, effectively relieving the stresses that had built up since 1861. This means that it should be a few centuries before another large quake in that area would be likely.

The same cannot be said, however, of the area even further south along that same subduction zone, near the Mentawai Islands, a chain of about 70 islands off the western coasts of Sumatra and Indonesia. This area, too, has been hit by giant earthquakes in the past (an 8.8 in 1797 and a 9.0 in 1833). More recently, on September 12, 2007, it experienced two earthquakes just 12 hours apart: first a magnitude 8.4 quake and then a magnitude 7.9.

These earthquakes did not come as a surprise to the Caltech researchers. Caltech geologist and paper coauthor Kerry Sieh, who is now at the Nanyang Technological University in Singapore, had long been using coral growth rings to quantify the pattern of slow uplift and subsidence in the Mentawai Islands area; that pattern, he and his colleagues knew, is the result of stress build-up on the plate interface, which should eventually be released by future large earthquakes.

But was all that accumulated stress released in 2007? In the work described in the Nature letter, the researchers analyzed seismological records, remote sensing (inSAR) data, field measurements, and, most importantly, data gathered by an array of continuously recording GPS stations called SuGAr (for Sumatra Geodetic Array) to find out.

Their answer? The quakes hadn't even come close to doing their stress-reduction job. "In fact," says Ali Ozgun Konca, a Caltech scientist and the paper's first author, who did this work as a graduate student, "we saw release of only a quarter of the moment needed to make up for the accumulated deficit over the past two centuries." (Moment is a measure of earthquake size that takes into account how much the fault slips and over how much area.)

"The 2007 quakes occurred in the right place at the right time," adds Avouac. "They were not a surprise. What was a surprise was that those earthquakes were way smaller than we expected."

"The quake north of this region, in 2005, ruptured completely," says Konca. "But the 2007 sequence of quakes was more complicated. The slippage of the plates was patchy, and it didn't release all the strain that had accumulated."

"It was what we call a partial rupture," adds Avouac. "There's still enough strain to create another major earthquake in that region. We may have to wait a long time, but there's no reason to think it's over."

Other authors on the paper include Anthony Sladen, Aron J. Meltzner, John Galetzka, Jeff Genrich, and Don V. Helmberger from Caltech; Danny H. Natawidjaja from the Indonesian Institute of Science (LIPI); Peng Fang and Yehuda Bock from the Scripps Institution of Oceanography in La Jolla; Zhenhong Li from the University of Glasgow in Scotland; Mohamed Chlieh from the Université de Nice Sophia-Antipolis in France; Eric J. Fielding from the Jet Propulsion Laboratory; and Chen Ji from the University of California, Santa Barbara. The work detailed in the paper, "Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence," was supported by funding from the National Science Foundation and the Gordon and Betty Moore Foundation.

# # #


Lori Oliwenstein
Exclude from News Hub: 
News Type: 
Research News

Caltech Geobiologists Discover Unique "Magnetic Death Star" Fossil

Fossil and other new forms date to ancient period of global warming

PASADENA, Calif.-- An international team of scientists has discovered microscopic, magnetic fossils resembling spears and spindles, unlike anything previously seen, among sediment layers deposited during an ancient global-warming event along the Atlantic coastal plain of the United States.

The researchers, led by geobiologists from the California Institute of Technology (Caltech) and McGill University, describe the findings in a paper published online this week in the Proceedings of the National Academy of Sciences (PNAS).

Fifty-five million years ago, Earth warmed by more than 9 degrees Fahrenheit after huge amounts of carbon entered the atmosphere over a period of just a few thousand years. Although this ancient global-warming episode, known as the Paleocene-Eocene Thermal Maximum (PETM), remains incompletely explained, it might offer analogies for possible global warming in the future.

Perhaps in response to the environmental stress of the PETM, many land mammals in North America became dwarfed. Almost half of the common sea bottom-dwelling microorganisms known as foraminifera became extinct in newly warmer waters that were incapable of carrying the levels of dissolved oxygen for which they were adapted.

"Imagine our surprise to discover not only a fossil bloom of bacteria that make iron-oxide magnets within their cells, but also an entirely unknown set of organisms that grew magnetic crystals to giant sizes," said Caltech postdoctoral scholar Timothy Raub, who collected the samples from an International Ocean Drilling Program drill-core storehouse at Rutgers University in New Jersey.

A typical "giant" spearhead-shaped crystal is only about four microns long, which means that hundreds would fit on the period at the end of this sentence. However, the crystals found recently are eight times larger than the previous world record for the largest bacterial iron-oxide crystal.

According to Dirk Schumann, a geologist and electron microscopist at McGill University and lead author of the study, "It was easy to focus on the thousands of other bacterial fossils, but these single, unusual crystals kept appearing in the background. It soon became evident that they were everywhere."

In addition to their unusually large sizes, the magnetic crystals occur in a surprising array of shapes. For example, the spearhead-like crystals have a six-sided "stalk" at one end, a bulbous middle, and a sharp, tapered tip at the other end. Once reaching a certain size, spearhead crystals grow longer but not wider, a directed growth pattern that is characteristic of most higher biological organisms.

The spearhead magnetic crystals compose a minor fraction of all of the iron-oxide crystals in the PETM clay layer. Most of the crystals have smaller sizes and special shapes, which indicate that they are fossils of magnetotactic bacteria. This group of microorganisms, long studied at Caltech by study coauthor Joseph Kirschvink, the Nico and Marilyn Van Wingen Professor of Geobiology, use magnets to orient themselves within Earth's magnetic field, and proliferate in oxygen-poor water.

Spearheads are not, however, the rarest fossil type in the deposit. That honor belongs to a spherical cluster of spearheads informally dubbed the "Magnetic Death Star" by the researchers. The Magnetic Death Star may have preserved the crystals as they occurred in their original biological structure.

The researchers could not find a similar-shaped organism anywhere in the paleontological annals. They hypothesize that it may have been a single-celled eukaryote that evolved for the first time during the PETM and was outcompeted once the strange climate conditions of that time diminished. Alternatively, it may still exist today in a currently undiscovered location.

"The continental shelf of the mid-Atlantic states during the PETM must have been very iron-rich, much like the Amazon shelf today," notes study coauthor Robert Kopp of Princeton University, who first started working on the project while a graduate student at Caltech. "These fossils may be telling a story of radical environmental transformation: imagine a river like the Amazon flowing at least occasionally where the Potomac is today."

The paper, "Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum," will appear in the early online issue of PNAS the week of October 20. The Caltech work was supported by the NASA Exobiology program.

Kathy Svitil

Caltech Scientists Offer New Explanation for Monsoon Development

PASADENA, Calif.--Geoscientists at the California Institute of Technology have come up with a new explanation for the formation of monsoons, proposing an overhaul of a theory about the cause of the seasonal pattern of heavy winds and rainfall that essentially had held firm for more than 300 years.

The traditional idea of monsoon formation was developed in 1686 by English astronomer and mathematician Edmond Halley, namesake of Halley's Comet. In Halley's model, monsoons are viewed as giant sea-breeze circulations, driven by the differences in heat capacities between land and ocean surfaces that, upon heating by sunlight, lead to temperature differences between warmer land and cooler ocean surfaces--for example, between the Indian subcontinent and the oceans surrounding it.

"These circulations form overturning cells, with air flowing across the equator toward the warmer land surface in the summer hemisphere, rising there, flowing back toward and across the equator aloft, and sinking in the winter hemisphere," explains Tapio Schneider, associate professor of environmental science and engineering at Caltech.

A different explanation is offered by Schneider and Simona Bordoni of the National Center for Atmospheric Research in Boulder, Colorado. The duo used a computer-generated, water-covered, hypothetical earth (an "aquaplanet") to simulate monsoon formation and found that differences in heat capacities between land and sea were not necessary. Bordoni was a Moore Postdoctoral Scholar at Caltech and will return to Caltech as an assistant professor in 2009.

Monsoons arise instead because of an interaction between the tropical circulation and large-scale turbulent eddies generated in the atmosphere in middle latitudes. These eddies, which can span more than 300 miles across, form the familiar systems that govern the weather in middle latitudes.

The eddies, Schneider says, are "basically large waves, which crash into the tropical circulation. They 'break,' much like water waves on the beach, and modify the circulation as a result of the breaking. There are feedbacks between the circulation, the wind pattern associated with it in the upper atmosphere, and the propagation characteristics of the waves, which make it possible for the circulation to change rapidly." This can quickly generate the characteristic high surface winds and heavy rainfall of the monsoon.

Bordoni adds: "These feedbacks provide one possible explanation for the rapidity of monsoon onset, which had been a long-standing conundrum in the traditional view of monsoons," because substantial differences between land and sea temperatures can only develop slowly through heating by sunlight.

Although the results won't immediately produce better forecasts of impending monsoons, Schneider says, "in the long run, a better understanding of monsoons may lead to better predictions with semi-empirical models, but much more work needs to be done."

The paper, "Monsoons as eddy-mediated regime transitions of the tropical overturning circulation," appears in the advance online edition of Nature Geosciences. The work was supported by the Davidow Discovery Fund, a David and Lucile Packard Fellowship, a Moore Postdoctoral Fellowship, and the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation.

Kathy Svitil

Giant Impact Explains Mars Dichotomy

PASADENA, Calif.--The surface landscape of Mars, divided into lowlands in the north and highlands in the south, has long perplexed planetary scientists. Was it sculpted by several small impacts, via mantle convection in the planet's interior, or by one giant impact? Now scientists at the California Institute of Technology have shown through computer modeling that the Mars dichotomy, as the divided terrain has been termed, can indeed be explained by one giant impact early in the planet's history.

"The dichotomy is arguably the oldest feature on Mars," notes Oded Aharonson, associate professor of planetary science at Caltech and an author of the study. The feature arose more than four billion years ago, before the rest of the planet's complex geologic history was superimposed.

Scientists had previously discounted the idea that a single, giant impactor could have created the lower elevations and thinner crust of Mars's northern region, says Margarita Marinova, a graduate student in Caltech's Division of Geological and Planetary Sciences (GPS) and lead author of the study, which appears June 26 in the journal Nature. This special issue of the journal features a trio of papers on the Mars dichotomy.

For one thing, Marinova explains, it was thought that a single impact would leave a circular footprint, but the outline of the northern lowlands region is elliptical. There is also a distinct lack of a crater rim: topography increases smoothly from the lowlands to the highlands without a lip of concentrated material in between, as is the case in small craters. Finally, it was believed that a giant impactor would obliterate the record of its own occurrence by melting a large fraction of the planet and forming a magma ocean.

"We set out to show that it's possible to make a big hole without melting the majority of the surface of Mars," Aharonson says. The team modeled a range of projectile parameters that could yield a cavity the size and ellipticity of the Mars lowlands without melting the whole planet or making a crater rim.

After cranking 500 simulations combining various energies, velocities, and impact angles through the GPS division's Beowulf-class computer cluster CITerra, the researchers narrowed in on a "sweet spot"--a range of single-impact parameters that would make exactly the type of crater found on Mars. Although a large impact had been suggested (and discounted) in the past, Aharonson says, computers weren't fast enough to run the models. "The ability to search for parameters that allow an impact compatible with observations is enabled by the dedicated machine at Caltech," he adds.

The favored simulation conditions outlined by the sweet spot suggest an impact energy of around 10 to the 29 joules, which is equivalent to 100 billion gigatons of TNT. The impactor would have hit Mars at an angle between 30 and 60 degrees while traveling at 6 to 10 kilometers per second. By combining these factors, Marinova calculated that the projectile was roughly 1,600 to 2,700 kilometers across.

Estimates of the energy of the Mars impact place it squarely between the impact that is thought to have led to the extinction of dinosaurs on Earth 65 million years ago and the one believed to have extruded our planet's moon four billion years ago.

Indeed, the timing of formation of our moon and the Mars dichotomy is not coincidental, Marinova notes. "This size range of impacts only occurred early in solar system history," she says. The results of this study are also applicable to understanding large impact events on other heavenly bodies, like the Aitken Basin on the moon and the Caloris Basin on Mercury.

The Caltech study comes at a time of renewed interest in the ancient crustal feature on Mars, Aharonson notes. Also in this issue of Nature, Jeffrey Andrews-Hanna and Maria Zuber of MIT and Bruce Banerdt of JPL examine the gravitational and topographic signature of the dichotomy with information from the Mars orbiters. Another accompanying report, from a group at UC Santa Cruz led by Francis Nimmo, explores the expected consequences of mega-impacts.

The other author on this study is Erik Asphaug, a professor of earth and planetary sciences at UC Santa Cruz. 

Elisabeth Nadin

Stress Buildup Precedes Large Sumatra Quakes

PASADENA, Calif.--The island of Sumatra, Indonesia, has shaken many times with powerful earthquakes since the one that wrought the infamous 2004 Indian Ocean tsunami. Now, scientists from the California Institute of Technology and the Indonesian Institute of Sciences are harnessing information from these and earlier quakes to determine where the next ones will likely occur, and how big they will be.

Mohamed Chlieh, the lead author of a new report, looked at the region during his postdoctoral studies at Caltech with Jean-Philippe Avouac, professor of geology and director of Caltech's Tectonics Observatory (TO) and Kerry Sieh, Sharp Professor of Geology. They found that in the time between great earthquakes, some portions of the fault zone locked up while others crept along steadily, and the portions that were locked in the past few decades coincided with portions that rupture to produce large-magnitude quakes. The correlation was especially strong for two temblors of magnitude 8.7 that struck the region in 1861 and again in 2005.

The study also reveals which part of the Sumatra megathrust is storing strain that will be released during future large earthquakes.

Earthquakes in Sumatra are the manifestation of a sudden release of strain that constantly builds as the plates beneath the Indian Ocean creeps steadily toward southeast Asia and dive into the subduction zone under the island. If the total tectonic plate motion in the region is not taken up by fault slip during earthquakes, then a deficit builds until the next earthquake rupture. The patch of the fault where slip is greatest during an earthquake and releases the most pent-up strain, known as an asperity, also gets stuck between quakes. The scientists were interested in what was happening at the land surface, above these asperities, between big earthquakes.

Investigations by Caltech scientists in the region began when Sieh and his students started documenting the history of subsidence and emergence of the islands offshore Sumatra using the record provided by coral heads. Later on, a network of geodetic stations was deployed by the TO. To measure how strain built up in the calm interseismic period between earthquakes, Chlieh and his colleagues analyzed GPS measurements collected since 1991 and annual banding in corals from the past 50 years. Coral growth bands indicate vertical land motion because as the seafloor on which corals live shifts down or up, the creatures either grow to chase sunlight from below water or die back when elevated above water. Both the bands and the GPS data record small land-position shifts in interseismic periods. In contrast, they show drastic shifts during an earthquake, as the corals typically die when they are thrust high enough above or sunk too deep below sea level to survive.

The data provide a record of unevenly distributed deformation of the land surface directly above the subduction zone during the interseismic period. Modeling further indicates that this results from the asperities along the plate interface, while other parts remain smoothly slipping. These interseismic asperities are 10 times as wide--up to 175 kilometers--in the region where great earthquakes have occurred in the past.

"Our model shows asperities exactly at the same places that the 2005 Nias and the 1797 and 1833 earthquakes in the Mentawai islands occurred, indicating that aperities seem to be persistent features from one seismic cycle to another," Chlieh remarks. Avouac adds, "This is clear indication that the characteristics of large earthquakes are somewhat determined by properties of the plate interface that can be gauged in advance from measuring interseismic deformation.

"A priori, large earthquakes should not be expected where the plate interface is creeping, but are inescapable where it is locked. So it seems that we can, with interseismic observations, see these asperities before the earthquake occurs," he says. "The question now is, 'How well are we able to estimate the characteristics of the earthquakes that these asperities could produce?'"

The implications of the study are major, according to Chlieh. "Using the asperity locations, we may be able to construct some more realistic earthquake and tsunami models following different scenarios. Then we will have a good idea of the risk induced by these locked fault zones."

The study appears in the May issue of the Journal of Geophysical Research. Other authors on the paper are Danny Natawidjaja, a former Caltech grad student who is now at the Indonesian Institute of Sciences, and John Galetzka, staff geodesist with the TO.


Elisabeth Nadin

Partnerships of Deep-Sea Methane Scavengers Revealed

PASADENA, Calif.--The sea floor off the coast of Eureka, California, is home to a diverse assemblage of microbes that scavenge methane from cold deep-sea vents. Researchers at the California Institute of Technology have developed a technique to directly capture these cells, lending insight into the diverse symbiotic partnerships that evolved among different species in an extreme environment.

The community's interconnected metabolism sheds light on how the anaerobic microbes, which consume nearly 80 percent of the methane leaked from marine sediments, limit oceanic emissions of this potent greenhouse gas.

"Ninety-nine percent of what's out there we can't grow in the lab, including these methane-oxidizing organisms," says Victoria Orphan, an assistant professor of geobiology at Caltech in whose lab the cell sampling technique was developed.

"We know from ribosomal RNA studies that there is a lot of microbial diversity in nature, but we don't know what the vast majority of microbes are doing," Orphan adds. "We needed a method for separating specific organisms out of complex environments."

Metagenomic analysis, in which the genetic material of all microorganisms swept from their homes in a sample is sequenced wholesale, yields a plenitude of general information. Annelie Pernthaler, a former Caltech postdoc who is now a research scientist at the Centre for Environmental Research in Leipzig, Germany, and Orphan devised a technique to tease out individuals from the diverse microbial community of the deep-sea sediment. Their aim: to simplify the genomic sequencing to target only the organisms they were interested in.

They began with descents in the manned submersible Alvin, collecting cores of sea-floor sediment from areas where methane migrates from below. Back in the lab, the team used enzyme-tagged short DNA probes to specifically bind the ribosomal RNA in the methane-consuming microbes of the sediment. A second reaction used the enzyme to deposit fluorescent molecules within and around the cell, a method known as CARD-FISH, for "catalyzed reporter deposition fluorescence in situ hybridization."

The fluorescing cells and attached microorganisms were captured using microbeads that are both paramagnetic--a form of magnetism occurring only in the presence of an externally applied magnetic field--and coated with an antibody to the fluorescent molecule. This Caltech-patented technique, called "magneto-FISH," bypasses the need to grow the microorganisms in culture because it targets the fluorescing molecules around the cell instead of a specific molecule within the cell.

The cells separated by magneto-FISHing reveal who's partnered up with whom, and provides a fresh look at microbial symbiosis in nature, Orphan says. The main player near the methane vents is a methane-metabolizing member of the Archaea, a prokaryotic domain of life distinct from both bacteria and eukaryotes. Piggybacked on the archaeal cells are some members from among four different species of bacteria--three more than were previously known to be associated with these particular archaea--whose exact roles in the system can now be addressed.

The methane-vent partnership between archaea that consume methane and bacteria that reduce sulfate is believed to be a form of cometabolism or syntrophy, meaning "feeding together," where one species lives off the metabolic products of others. Using the information obtained from the metagenome of these partnerships, says Orphan, biologists can develop specific experiments to directly test the physiological and nutritional relationships between these organisms, as well as the ecological strategies used to successfully colonize deep-sea environments.

One example of such an experiment is highlighted in the group's study, published May 8 in the early online edition of the journal PNAS. The researchers discovered that the organisms possess genes for nitrogen fixation, a process that converts nitrogen gas into nourishing compounds like ammonia. "We were surprised to see these genes in the captured cells," says Anne Dekas, a geobiology graduate student at Caltech, "because we thought these organisms were relatively energy-starved, and nitrogen fixation takes a lot of energy."

Orphan and Dekas were able to show that the organisms are not just equipped for the task, they are actually carrying it out. "Showing nitrogen fixation is a great finding in itself," Dekas comments, "but it is also just one example of the hypothesis testing that can follow magneto-FISH coupled to metagenomic analysis."

Other authors on the study are Caltech's C. Titus Brown, a postdoc in biology; Shana Goffredi, a senior research fellow in environmental science and engineering; and Tsegereda Embaye, a technician in the division of geological and planetary sciences.

Elisabeth Nadin

A Grand Canyon as Old as the Dinosaurs?

PASADENA, Calif.--How the Grand Canyon was carved has been a topic of scientific controversy for nearly 140 years. Now, with new geochronologic data from the canyon and surrounding plateaus, geologists from the California Institute of Technology present significant evidence that the canyon formed nearly 50 million years earlier than previously thought.

The results will be published in the May issue of the Geological Society of America Bulletin in a paper by Rebecca Flowers, a former Caltech postdoctoral scholar now on the faculty of the University of Colorado; Chandler Family Professor of Geology Brian Wernicke; and Keck Foundation Professor of Geochemistry Kenneth Farley.

The team studied the sedimentary rock layers, or strata, of both the canyon and a large area of the surrounding plateaus. These strata were deposited near sea level sometime in the Paleozoic era (540-250 million years ago) and were subsequently uplifted and eroded to form the canyon. But questions like when and why the canyon itself formed have remained open.

The long-held interpretation sets canyon incision at about six million years ago, when the plateau that hosts it began to rise from near sea level to a current elevation of almost 7,000 feet. This view highlights the erosive power of the Colorado River, which cut into the plateau surface like a giant buzzsaw and progressively deepened the canyon at the same time the entire region was rising.

Now, using a radiometric dating method called uranium-thorium-helium [(U-Th)/He] dating, developed in Farley's lab, the researchers paint a different scenario. Uplift and carving of a deep canyon took place more than 55 million years ago, above the present position of the Grand Canyon's Upper Granite Gorge, within strata much younger than the Paleozoic rocks currently exposed in the canyon walls.

"When this canyon was formed, it looked like a much deeper version of present-day Zion Canyon, which cuts through strata of the Mesozoic era," Wernicke says. Then from 28 to 15 million years ago, a pulse of erosion deepened the already-formed canyon and also scoured the surrounding plateaus, stripping off the Mesozoic strata to reveal the Paleozoic rocks that we see today.

The key to the discovery lay in the ancient sandstones of the canyon walls, which contain scant grains of the phosphate mineral apatite that in turn host trace amounts of the radioactive elements uranium and thorium. These elements decay, spitting out helium atoms at well-constrained rates via alpha-particle emission. Although some of those atoms are lost through diffusion early in the grain's history, by measuring the abundances of all three elements, (U-Th)/He dating ultimately yields the time that an apatite crystal cooled below 70 degrees Celsius. Paired with information from boreholes about how Earth's temperature increases with depth, dates from apatite grains in rocks that are now at the surface communicate the last time those rocks were buried a mile deep.

A key finding of the Caltech team is that samples collected from the bottom of the Upper Granite Gorge region yield the same (U-Th)/He apatite dates as samples collected on the plateau surface nearby. "Because both canyon and plateau samples have resided near the same depth since 55 million years ago, a canyon of about the same dimensions as today must have existed at least that far back, and possibly as far back as the time of the last dinosaurs at the end of the Cretaceous period 65 million years ago," Wernicke states.

Wernicke says that the most surprising aspect of their new findings is that, since the Grand Canyon was originally cut, the adjacent plateaus have also eroded downward by about a mile, on average, every bit as fast as the bottom of the canyon. "And so the small, ephemeral streams that cover the arid plateau seem to be just as effective as the mighty Colorado at eroding away rock," he notes.

The erosional history proposed by the Caltech team jibes with other recent studies that also involve innovative radiometric dating techniques and speak to the early history of the canyon, Wernicke says. The first, undertaken by researchers led by Karl Karlstrom at the University of New Mexico and published last November in the same journal as the new Caltech study, demonstrated that the amount of downcutting of the Colorado in the Upper Granite Gorge was about 350 feet over the last 700,000 years. Extrapolated back in time, this rate is too slow to have carved the entire canyon in only six million years. Another University of New Mexico study, led by Carol Hill and Yemane Asmerom and published this March in the journal Science, demonstrated by dating cave deposits throughout the canyon that a water table, and therefore an erosion surface, lay somewhere near the canyon rim 17 million years ago, very close to the end of the pulse of erosion suggested by Caltech's (U-Th)/He dating.

The new work also echoes even earlier ideas of Richard Young of the State University of New York at Geneseo, Wernicke notes. In the 1980s, Young led a team that discovered that a group of ancient tributary canyons just south of the western Grand Canyon (Lower Granite Gorge region) were in fact originally formed between 63 and 50 million years ago, about the time the (U-Th)/He data suggest for initial cutting above the Upper Granite Gorge area. "The current wave of research thus strengthens the link between the formation of the tributary canyons and the evolution of the Grand Canyon proper, including the Upper Granite Gorge region," Wernicke says.

Wernicke credits much of the recent discoveries to cutting-edge dating techniques. "Although vigorous debate is sure to continue," he notes, "conventional wisdom about the history of the Grand Canyon in particular, and geology in general, is being challenged by these new, high-tech avenues of research."

Elisabeth Nadin

Water Vapor Detected in Protoplanetary Disks

PASADENA, Calif.--Water is an essential ingredient for forming planets, yet has remained hidden from scientists searching for it in protoplanetary systems, the spinning disks of particles surrounding newly formed stars where planets are born. Now the detection of water vapor in the inner part of two extrasolar protoplanetary disks brings scientists one step closer to understanding water's role during terrestrial planet formation.

By maximizing the spectroscopic capabilities of NASA's Spitzer Space Telescope and high-resolution measurements from the Keck II Telescope in Hawaii, researchers from the California Institute of Technology and other institutes found water molecules in disks of dust and gas around two young stars. DR Tau and AS 205A, respectively around 457 and 391 light-years away from Earth, are each at the center of a spinning disk of particles that may eventually coalesce to form planets.

"This is one of the very few times that water vapor has been detected in the inner part of a protoplanetary disk--the most likely place for terrestrial planets to form," says Colette Salyk, a graduate student in geological and planetary sciences at Caltech. She is the lead author of a group of scientists reporting their findings in the March 20 issue of the Astrophysical Journal Letters.

Salyk and her colleagues first harnessed light-emission data captured by Spitzer to inspect dozens of young stars with protoplanetary disks. They honed in on DR Tau and AS 205A because these presented a large number of water emission lines--spikes of brightness at certain wavelengths that are a unique fingerprint for water vapor. "Only Spitzer is capable of observing these particular lines in a large number of disks because it operates above Earth's obscuring water-vapor–rich atmosphere," says Salyk.

To determine in what part of the disk the vapor resides, the team made high-resolution measurements at shorter wavelengths with NIRSPEC, the Near-InfraRed cross-dispersed echelle grating Spectrometer for the Keck II Telescope. Unlike Spitzer, which observed water lines blended together into clumps, NIRSPEC can resolve individual water lines in selected regions where the atmospheric transmission is good. The shape of each line relays information on the velocity of the molecules emitting the light. "They were moving at fast speeds," says Salyk, "indicating that they came from close to the stars, which is where Earthlike planets might be forming."

"While we don't detect nearly as much water as exists in the oceans on Earth, we see only a very small part of the disk--essentially only its surface--so the implication is that the water is quite abundant," remarks coauthor Geoffrey Blake, professor of cosmochemistry and planetary sciences and professor of chemistry at Caltech.

The presence of water in the inner disk may indicate its stage on the road to planet formation. A planet like Jupiter in our solar system grew as its gravitational field trapped icy solids spinning in the outer part of the sun's planetary disk. However, before Jupiter gained much mass, these same icy solids could have traveled towards the star and evaporated to produce water vapor such as that seen around DR Tau and AS 205A.

Although they have not detected icy solids in the extrasolar disks, says Salyk, "our observations are possible evidence for the migration of solids in the disk. This is an important prediction of planet-forming models."

These initial observations portend more to come, says coauthor Klaus Pontoppidan, a Caltech Hubble Postdoctoral Scholar in Planetary Science. "We were surprised at how easy it is to find water in planet-forming disks once we had learned where to look. It will take years of work to understand the details of what we see."

Indeed, adds Blake, "This is a much larger story than just one or two disks. With upcoming observations of tens of young stars and disks with both Spitzer and NIRSPEC, along with our data in hand, we can construct a story for how water concentrations evolve in disks, and hopefully answer questions like how Earth acquired its oceans."

Other authors on the paper are Fred Lahuis of Leiden Observatory in the Netherlands and SRON, the Netherlands Institute for Space Research; Ewine van Dishoeck, also of Leiden Observatory; and Neal Evans of the University of Texas at Austin. 

Elisabeth Nadin

Tracking Earth Changes with Satellite Images

SAN FRANCISCO, Calif.--For the past two decades, radar images from satellites have dominated the field of geophysical monitoring for natural hazards like earthquakes, volcanoes, or landslides. These images reveal small perturbations precisely, but large changes from events like big earthquake ruptures or fast-moving glaciers remained difficult to assess from afar, until now.

Sebastien Leprince, a graduate student in electrical engineering at the California Institute of Technology, working under the supervision of geology professor and director of Caltech's Tectonics Observatory (TO), Jean-Philippe Avouac, wrote software that correlates any two optical images taken by satellite. It has proved extremely reliable in tracking large-scale changes on Earth's surface, like earthquake ruptures, the mechanics of "slow" landslides, or defining the fastest-moving sections of glaciers that, due to global warming, have recently increased their pace.

Leprince will describe his software and results of many of its applications on December 14 at the annual meeting of the American Geophysical Union (AGU) in San Francisco. His research will also be featured in the January 1 issue of Eos, AGU's weekly newspaper.

When the technique called InSAR, which uses radar images to reveal details about ground displacement, was introduced, it was quickly embraced. No longer did geoscientists have to rely solely on measurements made by troupes of field geologists or by ground-based devices that might not have been optimally placed. But, says Leprince, "InSAR is physically limited: it's good for small displacements but not for large ones. The radar resolution isn't enough to look at deformation with a large gradient."

Using optical images to complement the radar-based InSAR technique seemed like a natural step. When Leprince began grappling with the idea in 2003, he found several baby steps had been taken. "Satellite image correlation was not a science yet, it was more like an art," he says. The first attempts, reported in 1991, were inconclusive but promising. Since then, several teams of scientists had worked on the problem independently. Some had even developed it well enough to monitor glacier flow.

The major obstacle Leprince faced in developing optical image correlation software was that there were several steps involved but no one knew in which order to take them. "Errors came from everywhere, but where exactly?" he noted. "And we found at least one major flaw in each step."

Three of the four main steps involve correcting geometric distortions innate to taking pictures from space and projecting them onto a surface. The first step matches coordinates of the satellite image with coordinates on the ground. "This is not new, but the approximations being made were not okay," says Leprince. The second step describes the satellite's position in its orbit at the time it took the photo. This is just like in everyday life--you need to know how your camera was oriented when you show off a photo you snapped. In the next step, which Leprince says people never knew they were doing wrong, the image is correctly wrapped onto topography. Finally, the images are precisely combined-or coregistered-in order to measure surface displacements accurately.

"What is important is that we identified the steps and took each one independently and did an error analysis for each step to see how errors propagated," says Leprince. His program, which he calls COSI-Corr and which was packaged by the TO's software engineer Francois Ayoub for official release this year, takes all of these steps automatically in just a few hours of processing time. "You start the program, you go home, you have a nice weekend on the beach, and it's done."

The paper describing the software Leprince developed appeared in the June 2007 issue of the journal IEEE Transactions on Geoscience and Remote Sensing. COSI-Corr can now combine any images taken by different satellite imagers from different incidence views. For example, to analyze displacement from the 1999 Hector Mine earthquake near Twenty-Nine Palms in California, Leprince correlated a SPOT 4 image with an ASTER image. This had never been done before. It takes only a few hours to process.

Using his technique, Leprince has precisely measured offset from several notable recent earthquakes, including 2005 Kashmir, Pakistan; 2002 Denali, Alaska; 1999 Hector Mine and Chi Chi, Taiwan; and 1992 Landers, California. In the case of earthquakes, the image correlation technique can be used to map in detail all fault ruptures and to measure displacements both along and across the fault. Uncertainties, typically within centimeters for 10-15-meter-resolution images, are extremely low.

The day after Leprince released his software through the TO website, he was contacted by a geologist in Canada asking how the technique could be used to study glacier flow. Radar images cannot analyze glaciers because they move too fast and ice melting poses a problem. "The tectonic application was pretty well set up and we'd tested it thoroughly," says Leprince. "So we extended it to glaciology." And then to other studies as well.

What's tricky about studying glacier flow is that not only has their pace picked up in recent years due to climate change, but glaciers have a natural yearly cycle of ice gain and loss. The two signals can be discerned with cross-correlation of optical imagery. Leprince's method was used to study Mer de Glace glacier in the Alps, which flows at around 90 meters per year. The optical images provide a full view of the ice flow field, pinpointing exactly where the glacier is moving fastest. The same approach was taken with a landslide above the Alpine town of Barcelonnette in eastern France. Benchmarks had been planted to monitor the landslide's flow, and Leprince's correlation methods showed that all 38 of them missed the fastest-moving region. While the landslide is moving slow now, the town will be threatened when the landslide detaches and descends rapidly.

There are many more applications for correlating optical images to monitor Earth surface changes. Caltech geologists and their collaborators began to apply it to studying dunes, which radars cannot image, after they were contacted by labs in Egypt who need information on dune migration for urban planning.

"Radar interferometry is a huge technique, but you can only measure half of the world with it. Now we can measure the other half with this technique," comments Leprince. "The biggest thing is what's to come."

COSI-Corr and many of its applications will be presented by Leprince on Friday morning, December 14, in Moscone South Exhibit Hall B. To learn more about the technique, visit

Elisabeth Nadin