Caltech Geobiologist Receives Presidential Early Career Award

PASADENA, Calif.—Victoria Orphan, professor of geobiology at the California Institute of Technology (Caltech), is one of 94 winners of a Presidential Early Career Award for Scientists and Engineers (PECASE), the highest honor bestowed by the U.S. government on scientists and engineers beginning their independent careers.

Orphan, one of 13 Department of Energy (DOE) researchers in the 2011 class, was commended for "developing new techniques to study interactions between microbes, relevant for understanding the role of methane in the biosphere, which is of urgent importance for addressing the global carbon cycle and climate change; and for emerging leadership in the microbiology research community," according to the DOE.

"It is inspiring to see the innovative work being done by these scientists and engineers as they ramp up their careers—careers that I know will be not only personally rewarding but also invaluable to the nation," said President Obama in a statement issued September 26, announcing the awards.

The awards, established by President Clinton in 1996, are coordinated by the Office of Science and Technology Policy within the Executive Office of the President. Awardees are selected for their pursuit of innovative research at the frontiers of science and technology and their commitment to community service as demonstrated through scientific leadership, public education, or community outreach.

"I am deeply honored to have been selected as a PECASE awardee and grateful for the support by DOE's Biological and Environmental Research program," says Orphan, whose work spans the fields of environmental microbiology, ecology, and biogeochemistry, focusing primarily on the microbial cycling of methane. Her research—much of which is done using both manned and robotic submersibles to study areas of methane release in the deep sea—attempts to elucidate the metabolic links between microorganisms and their resulting impact on the cycling of carbon and nutrients in the environment.

Orphan received her PhD in biology in 2001 from UC Santa Barbara and was a National Research Council Postdoctoral Fellow at the NASA Ames Research Center before joining the Division of Geological and Planetary Science in 2004.

Kathy Svitil
Exclude from News Hub: 

Out-of-this-world researchers join GPS faculty

Growing up on an army base on Kwajalein, a part of the Marshall Islands, Heather Knutson was dazzled at an early age by the starry night sky from her clear vantage point in the South Pacific. Her parents, however, convinced her that a career in astronomy was not very practical, so instead she explored physics and engineering as a teenager. Now, just seven years after receiving a bachelor's in physics from Johns Hopkins, Knutson is one of the most recent faculty recruits to Caltech's Division of Geological and Planetary Sciences. And as an assistant professor of planetary science, she's proving that space study can be practical after all.

"I spent two years during my undergrad studies working at the Space Telescope Science Institute, which, incidentally, is next to the physics building at Johns Hopkins," says Knutson. "It was there that I realized that it might actually be possible to pursue a career in astronomy. Obviously I'm not in an astronomy department now, but since the objects I study are planets, I guess you could call me a planetary astronomer. I never planned to end up where I did, but I'm very glad that I have."  

After earning her BS, Knutson went on to receive both a master's and doctoral degree in astronomy from Harvard. Prior to joining Caltech, she was a Miller Fellow at UC Berkeley for two years. Her research is focused on characterizing the properties of the planets that orbit stars other than our sun, including the temperatures, compositions, and atmospheric circulation patterns of these extra solar planets (or exoplanets)—all of which she tries to identify using observations of eclipsing systems.

"We have this giant, diverse, weird sample of planets—none of which match anything that we've seen before in our own solar system," says Knutson. "If we can learn something about the properties of these planets, then we can potentially learn a lot about planets in general—how they form, how they evolve, what's typical, what isn't, et cetera."

Exoplanets are too far away to be seen from Earth, and therefore are studied through measurements taken when the orbiting planet passes in front of or behind its parent star, which is visible. For example, as the planet passes in front of the star, it blocks part of the star's light in an event known as a transit. The amount of light the planet blocks indicates the radius of the planet relative to that of the star, she explains.

"I use telescopes to observe these objects and Caltech has wonderful resources," says Knutson, who also studies weather on exoplanets. "The great thing about being here is that there are not only top-notch telescopes that you can get time on, but there are actually telescopes that you can drive to."

Knutson isn't the only new faculty member in GPS who spends her time looking into space. Bethany Ehlmann, assistant professor of planetary sciences who joined Caltech in August following a Marie Curie Fellowship at the Institut d'Astrophysique Spatiale (Institute of Space & Astrophysics) in France, has her sights set on a planet that robots, and potentially humans, can actually visit: Mars.

"My primary skills are in remote sensing and analysis of satellite images, using data both from other planets and acquired around Earth. It's a skill set I like to deploy for a wide variety of problems," she says. "Most recently, I've been working on understanding environmental conditions early in Mars's history, via detection of minerals like clays, carbonates, and sulfates."

Ehlmann's interest in Mars and remote sensing began when she was an undergraduate at Washington University, where planetary scientist Ray Arvidson, who also runs an undergrad program in environmental studies, served as her mentor. During her time as a student and after graduating, she spent nine months at NASA's Jet Propulsion Laboratory, working science operations for the Mars Exploration Rovers.

"I was working on day-to-day mission operations immediately after they landed. After that experience, I was more or less hooked on planetary science," says Ehlmann, who went on to spend two years at the University of Oxford as a Rhodes Scholar and then earn a PhD as a National Science Foundation fellow in the Geological Sciences department at Brown University.

Back on the West Coast, her research focus at Caltech will be three-fold, Ehlmann says. She plans to continue looking into the early history of Mars and its changing environmental processes though time, and will also work to improve remote sensing techniques, particularly for remote compositional analysis, or remotely detecting the minerals that make up planetary surfaces. In addition, she hopes to add to the understanding of physical and chemical weathering processes on Earth and other planets.

"I was one of those students who, on college applications, would check ecology, astronomy, geology, environmental policy, international relations. What I like about space exploration is that it actually involves a little piece of each of those," she says. "And certainly the science I do on the Earth side has policy implications for understanding environmental change."

Ehlmann is also excited to be back at JPL, where her journey in space exploration began. She will have a joint appointment at the lab, which is managed by Caltech for NASA.

"Caltech is a great institution to be a part of, with excellent students and fellow faculty, as well as wonderful resources like JPL," she says. "I'll spend some of my time working on current missions, and perhaps with some of the scientists and engineers to develop instruments to propose for future opportunities in solar system exploration."

Katie Neith
Exclude from News Hub: 
News Type: 
In Our Community

A Wave of New Earth-Science Faculty Joins GPS Division

Recent hires focus on ocean-related research

For Andrew Thompson, assistant professor of environmental science and engineering who joined the Caltech Division of Geological and Planetary Sciences in August, growing up in Rhode Island gave him a natural affinity for the ocean. However it wasn't until the summer before his senior year in college that he realized that he could put his fascination for the sea to good use.

"As a kid, I enjoyed math and physics, but thought oceanography was just about studying fish," says Thompson. While attending a summer program at Woods Hole Oceanographic Institution before his last undergrad year as an engineering student, however, he discovered that wasn't the case. "I learned there that I could do ocean science from a fluid-dynamics standpoint," he says, "and I fell in love with it."

After earning a BA in engineering sciences from Dartmouth, Thompson went on to receive an MPhil in fluid flow from the University of Cambridge and a PhD in physical oceanography from the Scripps Institution of Oceanography at UC San Diego. Thompson then returned to the UK for postdoctoral research stints at the University of East Anglia and the University of Cambridge. Before coming to Caltech, he spent a year as an advanced research fellow at the Natural Environment Research Council's British Antarctic Survey.

Throughout his studies, he never forgot the project at Woods Hole that first inspired him. 

"We looked at the transport of harmful algal blooms that had formed in the Gulf of Maine, which can be a serious economic and public-health problem," remembers Thompson. "The research I do now is actually very similar to that, but working in different regions of the ocean, primarily in the Southern Ocean around Antarctica."

Although Caltech doesn't have a long history of oceanography research, the Institute is striving to look very closely at climate from a holistic viewpoint at the Ronald and Maxine Linde Center for Global Environmental Science, where Thompson will have his lab among other scientists from a broad selection of disciplines. His physical ocean research focuses on eddies in the ocean, which are similar to atmospheric storms except that they happen in the water. They are important for mixing the ocean and transporting heat, chemicals, and biological elements. 

"I'm excited to be part of the Linde + Robinson Laboratory, which will bring people together from a wide range of backgrounds," says Thompson. "I think there will be a really good opportunity to broaden the work I've done and look at some of the implications on a larger scale."

While Thompson studies the way sea storms move things around, Victor Tsai, assistant professor of geophysics, is busy measuring the seismic noise produced by the movements of the ocean—partly from the crashing of waves onto the shore.

"My major focus right now is looking at sources of seismic energy other than earthquakes, and one of the biggest sources is ocean waves," he says. The waves create a noticeable seismic signal that can be recorded at seismic stations on the coast and inland. Analyzing this seismic noise helps researchers understand what makes up Earth's crust by tracking how fast the waves travel and how quickly they lose energy as they move through the earth.

Tsai also studies the effect that sea ice has on the seismic noise of ocean waves, which can give clues into how fast the ice is melting. His innovative research incorporates input from numerous fields, including seismology, geomechanics, glaciology, oceanography, and mathematical geophysics.

For Tsai, the new faculty appointment at Caltech is a bit of a homecoming. He earned a BS in geophysics here in 2004. Although he began his undergrad studies as a physics major, his first research project quickly showed Tsai that physics wasn't for him. He switched to geophysics, and his undergrad advisor was renowned seismologist Hiroo Kanamori, who influenced him to take a different look at the field.

"He had a research project for me that looked at atmospheric wave couplings with the solid earth," says Tsai. "That was my first geophysics project, and it was a bit unusual, since most people in the field aren’t looking at anything related to the atmosphere. I really enjoyed it, so I started to look for nontraditional geophysical problems to work on."

After Caltech, Tsai went on to earn an MA and PhD in Earth and planetary sciences at Harvard University. His postdoctoral work included a two-year Mendenhall Postdoctoral Fellowship at the Geological Hazards Science Center of the USGS in Colorado. In addition to seismic noise, Tsai, a member of Caltech's Seismo Lab, studies a wide variety of solid-earth topics, from the role of fluids in fault zones and understanding glacial earthquakes, to mechanical modeling of seismic events and improving current imaging techniques. He thinks the synergistic nature of the faculty here will help support and nourish his unique research interests.

"I really enjoy the way that people interact at Caltech," says Tsai. "Everyone shares ideas and are open to collaboration." 

Katie Neith

Astronomers Find Ice and Possibly Methane on Snow White, a Distant Dwarf Planet

PASADENA, Calif.—Astronomers at the California Institute of Technology (Caltech) have discovered that the dwarf planet 2007 OR10—nicknamed Snow White—is an icy world, with about half its surface covered in water ice that once flowed from ancient, slush-spewing volcanoes. The new findings also suggest that the red-tinged dwarf planet may be covered in a thin layer of methane, the remnants of an atmosphere that's slowly being lost into space.

"You get to see this nice picture of what once was an active little world with water volcanoes and an atmosphere, and it's now just frozen, dead, with an atmosphere that's slowly slipping away," says Mike Brown, the Richard and Barbara Rosenberg Professor and professor of planetary astronomy, who is the lead author on a paper to be published in the Astrophysical Journal Letters describing the findings. The paper is now in press.

Snow White—which was discovered in 2007 as part of the PhD thesis of Brown's former graduate student Meg Schwamb—orbits the sun at the edge of the solar system and is about half the size of Pluto, making it the fifth largest dwarf planet. At the time, Brown had guessed incorrectly that it was an icy body that had broken off from another dwarf planet named Haumea; he nicknamed it Snow White for its presumed white color.

Soon, however, follow-up observations revealed that Snow White is actually one of the reddest objects in the solar system. A few other dwarf planets at the edge of the solar system are also red. These distant dwarf planets are themselves part of a larger group of icy bodies called Kuiper Belt Objects (KBOs). As far as the researchers could tell, Snow White, though relatively large, was unremarkable—just one out of more than 400 potential dwarf planets that are among hundreds of thousands of KBOs.

"With all of the dwarf planets that are this big, there's something interesting about them—they always tell us something," Brown says. "This one frustrated us for years because we didn't know what it was telling us." At that time, the Near Infrared Camera (NIRC) at the Keck Observatory—which Caltech professor of physics Tom Soifer and chief instrument scientist Keith Matthews helped design in the 1990s—was the best instrument astronomers had to study KBOs, according to Brown. But NIRC had just been retired, so no one could observe 2007 OR10 in detail. "It kind of languished," he says.

Meanwhile, Adam Burgasser, a former graduate student of Brown's and now a professor at UC San Diego, was helping to design a new instrument called the Folded-port Infrared Echellette (FIRE). Last fall, Brown, Burgasser, and postdoctoral scholar Wesley Fraser used this instrument with the 6.5-meter Magellan Baade Telescope in Chile to take a closer look at 2007 OR10.

As expected, Snow White was red. But to their surprise, the spectrum revealed that the surface was covered in water ice. "That was a big shock," Brown says. "Water ice is not red." Although ice is common in the outer solar system, it's almost always white.

There is, however, one other dwarf planet that's both red and covered with water ice: Quaoar, which Brown helped discover in 2002. Slightly smaller than Snow White, Quaoar is still big enough to have had an atmosphere and a surface covered with volcanoes that spewed an icy slush, which then froze solid as it flowed over the surface.

But because Quaoar isn't as big as dwarf planets like Pluto or Eris, it could not hold onto volatile compounds like methane, carbon monoxide, or nitrogen as long. A couple of billion years after Quaoar formed, it began to lose its atmosphere to space; now, all that remains is some methane. Over time, exposure to the radiation from space turned that methane—which consists of a carbon atom bonded to four hydrogen atoms—into long hydrocarbon chains, which look red. Like the frost that covers a lawn on a cold morning, the irradiated methane sits on Quaoar's icy surface, giving it a rosy hue.

The spectrum of 2007 OR10 looks similar to Quaoar's, suggesting that what happened on Quaoar also happened on 2007 OR10. "That combination—red and water—says to me, 'methane,'" Brown explains. "We're basically looking at the last gasp of Snow White. For four and a half billion years, Snow White has been sitting out there, slowly losing its atmosphere, and now there's just a little bit left."

Although Snow White's spectrum clearly shows the presence of water ice, Brown says, the evidence for methane is not yet definitive. To find out, the astronomers will have to use a big telescope like the one at the Keck Observatory. If it turns out that Snow White does indeed have methane, it will join Quaoar as one of only two dwarf planets that straddle the border between the handful of objects large enough to hold onto volatile compounds, and the smaller bodies that make up the vast majority of KBOs.

Another task, Brown says, is to give the dwarf planet an official name, since "Snow White" was just a nickname he and his colleagues used. Besides, the moniker no longer makes sense for describing this very red object. Before the discovery of water ice and the possibility of methane, "2007 OR10" might have sufficed for the astronomy community, since it didn't seem noteworthy enough to warrant an official name. "We didn't know Snow White was interesting," Brown says. "Now we know it's worth studying."

To learn more, visit The research described in the Astrophysical Journal Letters paper, "The surface composition of large Kuiper Belt Object 2007 OR10," was supported by the NASA Planetary Astronomy program.

Marcus Woo

New Data Shows El Mayor—Cucapah Earthquake Was Simple on Surface, Complicated at Depth

PASADENA, Calif.— Like scars that remain on the skin long after a wound has healed, earthquake fault lines can be traced on Earth's surface long after their initial rupture. Typically, this line of intersection between the area where the fault slips and the ground is more complicated at the surface than at depth. But a new study of the April 4, 2010, El Mayor–Cucapah earthquake in Mexico reveals a reversal of this trend. While the fault involved in the event appeared to be superficially straight, the fault zone is warped and complicated at depth.

The study—led by researchers at the California Institute of Technology (Caltech) and documenting findings from the magnitude 7.2 event, which was centered in the Baja California state of Mexico—is available online in the journal Nature Geoscience.

The El Mayor–Cucapah earthquake happened along a system of faults that run from Southern California into Mexico, cutting through the Cucapah mountain range and across the Colorado River delta. This system of faults forms a portion of the plate boundary between the Pacific Plate and the North American Plate. Two main segments of the fault tilt downward steeply from the surface at opposing angles: the northwestern half angles downward beneath the Mexicali Valley, whereas the southeastern half angles away from the valley.

In a standard model, transform plate boundary structures—where two plates slide past one another—tend to be vertically oriented, which allows for lateral side-by-side shear fault motion. In the case of this quake, however, lead author Shengji Wei, a postdoctoral scholar in geophysics, and colleagues showed that the 120-kilometer-long rupture involved angled, non-vertical faults and that the event was initiated on a connecting extension fault between the two segments.

"Although the surface trace is nearly linear, we found that the event, which started with a smaller quake, happened mainly on two faults with opposite dipping directions," says Wei.

In fact, the seismic rupture traveled through a relatively complicated set of preexisting faults that are dipping in various directions. "It was really surprising to see a straight fault trace that cuts through the Colorado delta and the rugged topography of the Sierra Cucapah as a result of this event," says Jean-Philippe Avouac, director of Caltech's Tectonics Observatory and principal investigator on the study.   

The team used interferometric synthetic aperture radar (InSAR) and optical images gathered from satellites, global positioning system (GPS) data, and seismological data to study the rupture process. By combining the GPS data and remote sensing techniques—which provide measurements of surface displacement—and seismological techniques to study the ground vibrations generated by the temblor, the researchers were able to produce an extremely well-resolved model of the earthquake.

The model describes the geometry of the faults that broke during the quake and the time evolution of the rupture. It shows that once the earthquake began with an extensional deep break that pulled the two segments apart, it spread bilaterally to the northwest and the southeast. As the rupture spread northwestward, it continued to break erratically through the faults below the Cucapah mountain range. Simultaneously, the rupture spread towards the southeast, breaking a fault that had been covered over by a blanket of sediments that forms the Colorado River delta.

"High-resolution satellite radar images allowed us to locate a previously unmapped fault—the Indiviso Fault—beneath the Colorado River Delta that had been buried by river sediments since its last earthquake," says NASA's Jet Propulsion Laboratory (JPL) geophysicist Eric Fielding, who was a coauthor of the study. "This fault moved up to 16 feet, or 5 meters, in the April 4, 2010, earthquake."

Wei says that since the new analysis indicates the responsible fault is more segmented deep down than its straight surface trace suggests, the evolution and extent of this earthquake's rupture could not have been accurately anticipated from the surface geology alone. Anticipating the characteristics of an earthquake that would likely happen on a young fault system (like the event in the study) is a challenge, since the geologic structures involved in the new fault system are not clear enough.

According to Avouac, the data can also be used to illustrate the process by which the plate boundary—which separates the Pacific Plate from North America— evolves and starts connecting the Gulf of California to the Elsinore fault in Southern California.

"We may have to wait for a couple of million years to clearly see the active fault zone in the topography, as we can now see further north in Central California, for example," Avouac says. "Earthquakes with magnitude 7.5 and lower are probably typical of this kind of younger fault zone, while fault zones with a longer geological history and simpler fault geometries are more prone to produce larger ruptures."

This is important information, since damage estimates from the earthquake, which mostly affected agribusinesses, topped $440 million in the Mexicali Valley of Baja California and $90 million in the Imperial Valley of California.

The paper, "Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico," appeared as an advanced online publication on July 31 in the journal Nature Geoscience. Sebastien Leprince, Anthony Sladen, Don Helmberger, Egill Hauksson, Risheng Chu, and Mark Simons, all from the Division of Geological and Planetary Sciences at Caltech; Kenneth Hudnut, geophysicist at the United States Geological Survey (USGS) in Pasadena; Thomas Herring, professor of geophysics at MIT; and Richard Briggs, research geologist at USGS in Golden, Colorado, also contributed to the study, which was funded by the National Science Foundation, USGS, the Gordon and Betty Moore Foundation, NASA and the Southern California Earthquake Center.

Katie Neith

Stolper Elected to Great Britain's Royal Society

PASADENA, Calif.—Edward M. Stolper, provost of the California Institute of Technology (Caltech) and William E. Leonard Professor of Geology, has been named a Foreign Member of Great Britain's Royal Society. He is one of eight scientists elected in 2011. Stolper's election brings to six the number of foreign members of the Royal Society currently on the Caltech faculty.

Membership in the Royal Society is bestowed each year on a small number of the world's scientists. The oldest scientific academy in existence, the Royal Society was established in 1660 under the patronage of King Charles II for the purpose of "improving natural knowledge," and helped usher in the age of modern science. Today, the Society seeks to promote science leaders who champion innovation for the benefit of humanity and the planet.

The Society cited Stolper for his "experimental and theoretical work on melting and igneous processes on the Earth, Mars, and asteroids." The citation noted Stolper's development of the so-called sandwich method for determining the phase equilibria that control melting in the mantles of Earth and other planets and his development of the first quantitative model of water speciation in glasses and silicate melts, which showed that H2O dissolves in magmas as both hydroxyl groups and as molecular water. The Society's announcement also recognized Stolper as the first to propose that a small but distinctive group of igneous meteorites (the "SNC" group, which comprises the shergottite, nakhlite, and chassignite meteorites) come from the planet Mars; the first to show that certain dense silicate minerals can float relative to coexisting silicate liquids at high pressures due to the very high compressibilities of magmas, a finding with implications for the differentiation of large silicate planets; and the first to demonstrate a linear relationship between the extent of melting in Earth's mantle and water content through studies of magmas that have erupted in the Mariana trough and in other subduction zone environments. 

In addition, Stolper was recently elected a foreign member of the Academia Europaea ("The Academy of Europe"), a pan-European academy of humanities, letters, and sciences founded in 1988 to promote learning, education, and research. Members are drawn from the physical sciences and technology, biological sciences and medicine, mathematics, the letters and humanities, social and cognitive sciences, economics, and the law.

A member of Caltech's faculty since 1979, Stolper was named the William E. Leonhard Professor of Geology in 1990. He served as chair of the Division of Geological and Planetary Sciences from 1994 to 2004. He was interim provost in 2004, and in 2007 he was named provost, the chief academic officer of the Institute.

Katie Neith
Exclude from News Hub: 
News Type: 
In Our Community

Genesis samples reveal new clues about sun's chemical makeup

Ever since a crash landing on Earth grounded NASA's Genesis mission in 2004, scientists have been gathering, cleaning, and analyzing solar wind particles collected by the spacecraft. Now, two new studies published in Science reveal that Earth's chemistry is less like the sun's than previously thought.

Because the sun, moon, planets, and meteorites in our solar system started from the same cloud of dust and gases, a long-held assumption has been that these objects share the same chemistry. However, data obtained from samples of material ejected from the outer portion of the sun, which Genesis collected over a two-year time period, show differences in isotopic content of both oxygen and nitrogen when compared to the Earth's atmosphere. Isotopes are variants of a particular element that differ and are identified by their number of neutrons.

One study found that the percentage of oxygen-16—the most prevalent kind of oxygen isotope in the solar system—was slightly higher in solar wind samples than it is in air on Earth and the other terrestrial planets. The second study examined nitrogen isotopes and found that although both the sun and Jupiter appear to have slightly more nitrogen-14 than Earth, they have 40 percent less N-15. These variations offer insight into how our solar system evolved.

"The sun houses more than 99 percent of the material currently in our solar system, so it's a good idea to get to know it better," said Don Burnett, professor of nuclear geochemistry, emeritus, at Caltech, and Genesis Principal Investigator. "While it was more challenging than expected, we have answered some important questions, and like all successful missions, generated plenty more."

Burnett says that the Genesis team will continue to mine the salvaged spacecraft for usable samples. To learn more about Genesis and keep up-to-date on new research findings from the mission, visit

Katie Neith

Caltech-led Researchers Measure Body Temperatures of Dinosaurs for the First Time

Some Dinosaurs Were as Warm as Most Modern Mammals

PASADENA, Calif.—Were dinosaurs slow and lumbering, or quick and agile? It depends largely on whether they were cold or warm blooded. When dinosaurs were first discovered in the mid-19th century, paleontologists thought they were plodding beasts that had to rely on their environments to keep warm, like modern-day reptiles. But research during the last few decades suggests that they were faster creatures, nimble like the velociraptors or T. rex depicted in the movie Jurassic Park, requiring warmer, regulated body temperatures like in mammals.

Now, a team of researchers led by the California Institute of Technology (Caltech) has developed a new approach to take body temperatures of dinosaurs for the first time, providing new insights into whether dinosaurs were cold or warm blooded. By analyzing isotopic concentrations in teeth of sauropods, the long-tailed, long-necked dinosaurs that were the biggest land animals to have ever lived—think Apatosaurus (also known as Brontosaurus)—the team found that the dinosaurs were about as warm as most modern mammals.

"This is like being able to stick a thermometer in an animal that has been extinct for 150 million years," says Robert Eagle, a postdoctoral scholar at Caltech and lead author on the paper to be published online in the June 23 issue of Science Express. (Click here for video and additional images.)

"The consensus was that no one would ever measure dinosaur body temperatures, that it's impossible to do," says John Eiler, a coauthor and the Robert P. Sharp Professor of Geology and professor of geochemistry. And yet, using a technique pioneered in Eiler's lab, the team did just that.

The researchers analyzed 11 teeth, dug up in Tanzania, Wyoming, and Oklahoma, that belonged to Brachiosaurus brancai and Camarasaurus. They found that the Brachiosaurus had a temperature of about 38.2 degrees Celsius (100.8 degrees Fahrenheit) and the Camarasaurus had one of about 35.7 degrees Celsius (96.3 degrees Fahrenheit), warmer than modern and extinct crocodiles and alligators but cooler than birds. The measurements are accurate to within one or two degrees, Celsius.

"Nobody has used this approach to look at dinosaur body temperatures before, so our study provides a completely different angle on the longstanding debate about dinosaur physiology," Eagle says.

The fact that the temperatures were similar to those of most modern mammals might seem to imply that dinosaurs had a warm-blooded metabolism. But, the researchers say, the issue is more complex. Because large sauropod dinosaurs were so huge, they could retain their body heat much more efficiently than smaller mammals like humans. "If you're an animal that you can approximate as a sphere of meat the size of a room, you can’t be cold unless you’re dead," Eiler explains. So even if dinosaurs were "cold blooded" in the sense that they depended on their environments for heat, they would still have warm body temperatures.

A Jurassic sauropod.
Credit: Illustrated by Russell Hawley, Tate Geological Museum

"The body temperatures we've estimated now provide a key piece of data that any model of dinosaur physiology has to be able to explain," says Aradhna Tripati, a coauthor who's an assistant professor at UCLA and visiting researcher in geochemistry at Caltech. "As a result, the data can help scientists test physiological models to explain how these organisms lived."

The measured temperatures are lower than what's predicted by some models of body temperatures, suggesting there is something missing in scientists' understanding of dinosaur physiology. These models imply dinosaurs were so-called gigantotherms, that they maintained warm temperatures by their sheer size. To explain the lower temperatures, the researchers suggest that the dinosaurs could have had some physiological or behavioral adaptations that allowed them to avoid getting too hot. The dinosaurs could have had lower metabolic rates to reduce the amount of internal heat, particularly as large adults. They could also have had something like an air-sac system to dissipate heat. Alternatively, they could have dispelled heat through their long necks and tails.

Previously, researchers have only been able to use indirect ways to gauge dinosaur metabolism or body temperatures. For example, they infer dinosaur behavior and physiology by figuring out how fast they ran based on the spacing of dinosaur tracks, studying the ratio of predators to prey in the fossil record, or measuring the growth rates of bone. But these various lines of evidence were often in conflict. "For any position you take, you can easily find counterexamples," Eiler says. “How an organism budgets the energy supply that it gets from food and creates and stores the energy in its muscles—there are no fossil remains for that," he says. "So you just sort of have to make your best guess based on indirect arguments.”

But Eagle, Eiler, and their colleagues have developed a so-called clumped-isotope technique that shows that it is possible to take body temperatures of dinosaurs—and there's no guessing involved. “We’re getting at body temperature through a line of reasoning that I think is relatively bullet proof, provided you can find well-preserved samples," Eiler says. In this method, the researchers measure the concentrations of the rare isotopes carbon-13 and oxygen-18 in bioapatite, a mineral found in teeth and bone. How often these isotopes bond with each other—or "clump"—depends on temperature. The lower the temperature, the more carbon-13 and oxygen-18 tend to bond in bioapatite. So measuring the clumping of these isotopes is a direct way to determine the temperature of the environment in which the mineral formed—in this case, inside the dinosaur.

Camarasaurus tooth from the Jurassic Morrison Formation of North America that was analyzed in the study by Eagle et al.
Credit: Thomas Tutken (Bonn University)

"What we’re doing is special in that it’s thermodynamically based," Eiler explains. "Thermodynamics, like the laws of gravity, is independent of setting, time, and context." Because thermodynamics worked the same way 150 million years ago as it does today, measuring isotope clumping is a robust technique.

Identifying the most well-preserved samples of dinosaur teeth was one of the major challenges of the analysis, the researchers say, and they used several ways to find the best samples. For example, they compared the isotopic compositions of resistant parts of teeth—the enamel—with easily altered materials—dentin and fossil bones of related animals. Well-preserved enamel would preserve both physiologically possible temperatures and be isotopically distinct from dentin and bone.

The next step is to take temperatures of more dinosaur samples and extend the study to other species of extinct vertebrates, the researchers say. In particular, taking the temperature of unusually small and young dinosaurs would help test whether dinosaurs were indeed gigantotherms. Knowing the body temperatures of more dinosaurs and other extinct animals would also allow scientists to learn more about how the physiology of modern mammals and birds evolved.

The Science paper is titled, "Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals." In addition to Eagle, Eiler, and Tripati, the other authors are Thomas Tütken from the University of Bonn, Germany; Caltech undergraduate Taylor Martin; Henry Fricke from Colorado College; Melissa Connely from the Tate Geological Museum in Casper, Wyoming; and Richard Cifelli from the University of Oklahoma. Eagle also has a research affiliation with UCLA.

This research was supported by the National Science Foundation and the German Research Foundation.

Marcus Woo

Caltech-led Team Debunks Theory on End of "Snowball Earth" Ice Age

Finds that rocks used as key geologic evidence were formed deep within Earth millions of years after the ice age ended

PASADENA, Calif.—There's a theory about how the Marinoan ice age—also known as the "Snowball Earth" ice age because of its extreme low temperatures—came to an abrupt end some 600 million years ago. It has to do with large amounts of methane, a strong greenhouse gas, bubbling up through ocean sediments and from beneath the permafrost and heating the atmosphere.

The main physical evidence behind this theory has been samples of cap dolostone from south China, which were known to have a lot less of the carbon-13 isotope than is normally found in these types of carbonate rocks. (Dolostone is a type of sedimentary rock composed of the carbonate mineral, dolomite; it's called cap dolostone when it overlies a glacial deposit.) The idea was that these rocks formed when Earth-warming methane bubbled up from below and was oxidized—"eaten"—by microbes, with its carbon wastes being incorporated into the dolostone, thereby leaving a signal of what had happened to end the ice age. The idea made sense, because methane also tends to be low in carbon-13; if carbon-13-depeleted methane had been made into rock, that rock would indeed also be low in carbon-13. But the idea was controversial, too, since there had been no previous isotopic evidence in carbonate rock of methane-munching microbes that early in Earth's history.

And, as a team of scientists led by researchers from the California Institute of Technology (Caltech) report in this week's issue of the journal Nature, it was also wrong—at least as far as the geologic evidence they looked at goes.

This is a scanned image of a cut and polished slab of the cap dolostone from South China that contains highly carbon-13-depleted carbonate. The view shown is 3 inches wide.
Credit: Thomas Bristow

Their testing shows that the rocks on which much of that ice-age-ending theory was based were formed millions of years after the ice age ended, and were formed at temperatures so high there could have been no living creatures associated with them.

"Our findings show that what happened in these rocks happened at very high temperatures, and abiologically," says John Eiler, the Robert P. Sharp Professor of Geology and professor of geochemistry at Caltech, and one of the paper's authors. "There is no evidence here that microbes ate methane as food. The story you see in this rock is not a story about ice ages."

To tell the rocks' story, the team used a technique Eiler developed at Caltech that looks at the way in which rare isotopes (like the carbon-13 in the dolostone) group, or "clump," together in crystalline structures like bone or rock. This clumping, it turns out, is highly dependent upon the temperature of the immediate environment in which the crystals form. Hot temperatures mean less clumping; low temperatures mean more.

View from one of the cap dolostone collection sites in south China, looking along the cliffs of the Yangtze Gorges.
Credit: Thomas Bristow

"The rocks that we analyzed for this study have been worked on before," says Thomas Bristow, the paper's first author and a former postdoc at Caltech who is now at NASA Ames Research Center, "but the unique advance available and developed at Caltech is the technique of using carbonate clumped-isotopic thermometry to study the temperature of crystallization of the samples. It was primarily this technique that brought new insights regarding the geological history of the rocks."

What the team's thermometer made very clear, says Eiler, is that "the carbon source was not oxidized and turned into carbonate at Earth's surface. This was happening in a very hot hydrothermal environment, underground."

In addition, he says, "We know it happened at least millions of years after the ice age ended, and probably tens of millions. Which means that whatever the source of carbon was, it wasn't related to the end of the ice age."

Since this rock had been the only carbon-isotopic evidence of a Precambrian methane seep, these findings bring up a number of questions—questions not just about how the Marinoan ice age ended, but about Earth's budget of methane and the biogeochemistry of the ocean.

"The next stage of the research is to delve deeper into the question of why carbon-13-depleted carbonate rocks that formed at methane seeps seem to only be found during the later 400 million years of Earth history," says John Grotzinger, the Fletcher Jones Professor of Geology at Caltech and the principal investigator on the work described.

Unusual textures exposed in the cap dolostone from the field. Hand lens for scale is about 1 inch long.
Credit: Thomas Bristow

"It is an interesting fact of the geologic record that, despite a well-preserved record of carbonates beginning 3.5 billion years ago, the first 3 billion years of Earth history does not record evidence of methane oxidation. This is a curious absence. We think it might be linked to changes in ocean chemistry through time, but more work needs to be done to explore that."

In addition to Bristow, Eiler, and Grotzinger, the other authors on the Nature paper, "A hydrothermal origin for isotopically anomalous cap dolostone cements from south China," are Magali Bonifacie, a former Caltech postdoc now at the Institut de Physique du Globe de Paris, and Arkadiusz Derkowski from the Polish Academy of Sciences in Krakow.

The work was supported by an O. K. Earl Postdoctoral Fellowship, by the National Science Foundation's Division of Earth Sciences and its Geobiology and Environmental Geochemistry program, and by CNRS-INSU (French research agency).

Lori Oliwenstein

Caltech Researchers Release First Large Observational Study of 9.0 Tohoku-Oki Earthquake

Data yields surprising findings about energy distribution over the fault slip and stress accumulation in the Japan Trench

PASADENA, Calif.—When the magnitude 9.0 Tohoku-Oki earthquake and resulting tsunami struck off the northeast coast of Japan on March 11, they caused widespread destruction and death. Using observations from a dense regional geodetic network (allowing measurements of earth movement to be gathered from GPS satellite data), globally distributed broadband seismographic networks, and open-ocean tsunami data, researchers have begun to construct numerous models that describe how the earth moved that day.

Now, a study led by researchers at the California Institute of Technology (Caltech), published online in the May 19 issue of Science Express, explains the first large set of observational data from this rare megathrust event.

"This event is the best recorded great earthquake ever," says Mark Simons, professor of geophysics at Caltech’s Seismological Laboratory and lead author of the study. For scientists working to improve infrastructure and prevent loss of life through better application of seismological data, observations from the event will help inform future research priorities.

Simons says one of the most interesting findings of the data analysis was the spatial compactness of the event. The megathrust earthquake occurred at a subduction zone where the Pacific Plate dips below Japan. The length of fault that experienced significant slip during the Tohoku-Oki earthquake was about 250 kilometers, about half of what would be conventionally expected for an event of this magnitude. 

Furthermore, the area where the fault slipped the most—30 meters or more—happened within a 50- to 100-kilometer-long segment. "This is not something we have documented before," says Simons. "I'm sure it has happened in the past, but technology has advanced only in the past 10 to 15 years to the point where we can measure these slips much more accurately through GPS and other data."

For Jean Paul Ampuero, assistant professor of seismology at Caltech’s Seismological Laboratory who studies earthquake dynamics, the most significant finding was that high- and low-frequency seismic waves can come from different areas of a fault. "The high-frequency seismic waves in the Tohoku earthquake were generated much closer to the coast, away from the area of the slip where we saw low-frequency waves," he says.

Simons says there are two factors controlling this behavior; one is because the largest amount of stress (which is what generates the highest-frequency waves) was found at the edges of the slip, not near the center of where the fault began to break. He compares the finding to what happens when you rip a piece of paper in half. "The highest amounts of stress aren’t found where the paper has just ripped, but rather right where the paper has not yet been torn," he explains. "We had previously thought high-frequency energy was an indicator of fault slippage, but it didn’t correlate in our models of this event." Equally important is how the fault reacts to these stress concentrations; it appears that only the deeper segments of the fault respond to these stresses by producing high-frequency energy. 

Ampuero says the implications of these observations of the mechanical properties of tectonic faults need to be further explored and integrated in physical models of earthquakes, which will help scientists better quantify earthquake hazards.

"We learn from each significant earthquake, especially if the earthquake is large and recorded by many sensors," says Ampuero. "The Tohoku earthquake was recorded by upwards of 10 times more sensors at near-fault distances than any other earthquake. This will provide a sharper and more robust view of earthquake rupture processes and their effects."

For seismologist Hiroo Kanamori, Caltech’s Smits Professor of Geophysics, Emeritus, who was in Japan at the time of the earthquake and has been studying the region for many years, the most significant finding was that a large slip occurred near the Japan Trench. While smaller earthquakes have happened in the area, it was believed that the relatively soft material of the seafloor would not support a large amount of stress. "The amount of strain associated with this large displacement is nearly five to 10 times larger than we normally see in large megathrust earthquakes," he notes. "It has been generally thought that rocks near the Japan Trench could not accommodate such a large elastic strain."

The researchers are still unsure why such a large strain was able to accumulate in this area. One possibility is that either the subducting seafloor or the upper plate (or both) have some unusual structures—such as regions that were formerly underwater mountain ranges on the Pacific Plate—that have now been consumed by the subduction zone and cause the plates to get stuck and build up stress.

"Because of this local strengthening—whatever its cause—the Pacific Plate and the Okhotsk Plate had been pinned together for a long time, probably 500 to 1000 years, and finally failed in this magnitude 9.0 event," says Kanamori. "Hopefully, detailed geophysical studies of seafloor structures will eventually clarify the mechanism of local strengthening in this area."

Simons says researchers knew very little about the area where the earthquake occurred because of limited historical data.

"Instead of saying a large earthquake probably wouldn’t happen there, we should have said that we didn't know," he says. Similarly, he says the area just south of where the fault slipped is in a similar position; researchers don't yet know what it might do in the future.

"It is important to note that we are not predicting an earthquake here," emphasizes Simons. "However, we do not have data on the area, and therefore should focus attention there, given its proximity to Tokyo."

He says that the relatively new Japanese seafloor observation systems will prove very useful in scientists' attempts to learn more about the area.

"Our study is only the first foray into what is an enormous quantity of available data," says Simons. "There will be a lot more information coming out of this event, all of which will help us learn more in order to help inform infrastructure and safety procedures."

Other coauthors of the paper, "The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries," are (from Caltech's Seismological Laboratory) Sarah E. Minson, staff seismologist; Anthony Sladen, visitor in geophysics; Francisco Ortega Culaciati, graduate student in geophysics; Junle Jiang, graduate student in geophysics; Lingsen Meng, graduate student in geophysics; Shengji Wei, postdoctoral scholar in geophysics; Risheng Chu, staff seismologist; and Donald V. Helmberger, Smits Family Professor of Geological and Planetary Sciences. In addition, Susan E. Owen, senior research scientist at the Jet Propulsion Laboratory (JPL); Eric Hetland, assistant professor of geological sciences at the University of Michigan; Angelyn W. Moore, scientist at JPL; and Frank H. Webb, principal scientist at JPL's Southern California Integrated GPS Network contributed to the study.

The work was funded by the Gordon and Betty Moore Foundation, National Science Foundation grants, the Southern California Earthquake Center, and NASA's internal Research and Technology Development program.

Katie Neith