Seismologist reflects on his firsthand experience of the Japanese earthquake

Eminent seismologist Hiroo Kanamori, Caltech's Smits Professor of Geophysics, Emeritus, has been studying the movement of the earth his entire career. On March 11 he was in Tokyo, experiencing firsthand the largest earthquake in the country's recorded history.

"It's hard to believe that it was a coincidence that I arrived there on the eve of  'a once in a thousand years' event," says Kanamori.

He says that when the University of Tokyo building he was in squeaked and began to shake—for a long time, with a gradual increase in intensity—he could tell that the earthquake was not centered nearby. Judging from the strength of the shaking, he estimated that the quake might be a magnitude 8 or larger.

Kanamori met up with fellow seismologists from the university when he evacuated the building. With no reliable source of information, they shared initial thoughts and assumptions about the event.

"Early reports said it was a 7.9, which seemed reasonable to me given what I know about the area," he says. "But when I heard that it was actually a 9, I was surprised."

Kanamori and others had previously theorized that where a plate is very young, it tends to produce big earthquakes, such as the event in Chile last year, which happened on a plate that is 10 million years old—a baby when it comes to tectonic plates.

"But where old plates are subducting, we don't normally have giant earthquakes," says Kanamori. "This explanation usually works. However, the plate off the coast of Tohoku where this earthquake occurred is old, about 130 million years. Thus, at first sight, this event was a big exception."

A deep knowledge of earthquakes is not the only expertise that informed his reactions to the event. In October of last year, Kanamori traveled to the coast near Sendai—an area close to the epicenter of the quake and hit hard by the tsunami—with Luis Rivera, a seismologist at the Institut de Physique du Globe de Strasbourg, with whom Kanamori has been working on improving tsunami early-warning systems for the last several years.

"We walked the beach for two days to look at the coastal topography and try to understand how bad it might be when a tsunami came," he recalls. "It was very obvious that it would be devastating—there are no prominent roads or trails that lead to the nearby highlands."

Kanamori emphasizes that the rapid dissemination of information after a big event is extremely important to warning systems for tsunamis and recovery efforts for earthquakes. He says that information needs to be collected on a global scale, since local systems often fail during a natural disaster. This requires good coordination between agencies in different countries.

"In the case of an emergency, they can exchange information and take immediate action," he says.

Kanamori is also quick to point out that the field of seismology is rapidly advancing its methods for data collection and analysis so that we can improve the way we deal with emergencies. But at the end of the day, we have to prepare for the unexpected.  

"In our science, it's very difficult to prove anything because you can't experiment. You have to rely on nature," he says. "Whatever happens in nature, you cannot predict 100 percent, so building robust infrastructures using rapid reliable information to prepare for the unexpected is very important."

For information on supporting the Japanese community at Caltech in their effort to help those in need, click here

Writer: 
Katie Neith
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Warm Water Causes Extra-cold Winters in Northeastern North America and Northeastern Asia

PASADENA, Calif.—If you're sitting on a bench in New York City's Central Park in winter, you're probably freezing. After all, the average temperature in January is 32 degrees Fahrenheit. But if you were just across the pond in Porto, Portugal, which shares New York's latitude, you'd be much warmer—the average temperature is a balmy 48 degrees Fahrenheit.

Throughout northern Europe, average winter temperatures are at least 10 degrees Fahrenheit warmer than similar latitudes on the northeastern coast of the United States and the eastern coast of Canada. The same phenomenon happens over the Pacific, where winters on the northeastern coast of Asia are colder than in the Pacific Northwest.

Researchers at the California Institute of Technology (Caltech) have now found a mechanism that helps explain these chillier winters—and the culprit is warm water off the eastern coasts of these continents.

"These warm ocean waters off the eastern coast actually make it cold in winter—it's counterintuitive," says Tapio Schneider, the Frank J. Gilloon Professor of Environmental Science and Engineering.

Schneider and Yohai Kaspi, a postdoctoral fellow at Caltech, describe their work in a paper published in the March 31 issue of the journal Nature.

Using computer simulations of the atmosphere, the researchers found that the warm water off an eastern coast will heat the air above it and lead to the formation of atmospheric waves, drawing cold air from the northern polar region. The cold air forms a plume just to the west of the warm water. In the case of the Atlantic Ocean, this means the frigid air ends up right over the northeastern United States and eastern Canada.

For decades, the conventional explanation for the cross-oceanic temperature difference was that the Gulf Stream delivers warm water from the Gulf of Mexico to northern Europe. But in 2002, research showed that ocean currents aren't capable of transporting that much heat, instead contributing only up to 10 percent of the warming.

This image, taken by NASA's Terra satellite in March 2003, shows a much colder North America than Europe--even at equal latitudes. White represents areas with more than 50 percent snow cover. NASA's Aqua satellite also measured water temperatures. Water between 0 and -15 degrees Celsius is in pink, while water between -15 and -28 degrees Celsius is in purple.
Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio; George Riggs (NASA/SSAI)

Kaspi's and Schneider's work reveals a mechanism that helps create a temperature contrast not by warming Europe, but by cooling the eastern United States. Surprisingly, it's the Gulf Stream that causes this cooling.

In the northern hemisphere, the subtropical ocean currents circulate in a clockwise direction, bringing an influx of warm water from low latitudes into the western part of the ocean. These warm waters heat the air above it.

"It's not that the warm Gulf Stream waters substantially heat up Europe," Kaspi says. "But the existence of the Gulf Stream near the U.S. coast is causing the cooling of the northeastern United States."

The researchers' computer model simulates a simplified, ocean-covered Earth with a warm region to mimic the coastal reservoir of warm water in the Gulf Stream. The simulations show that such a warm spot produces so-called Rossby waves.

Generally speaking, Rossby waves are large atmospheric waves—with wavelengths that stretch for more than 1,000 miles. They form when the path of moving air is deflected due to Earth's rotation, a phenomenon known as the Coriolis effect. In a way similar to how gravity is the force that produces water waves on the surface of a pond, the Coriolis force is responsible for Rossby waves.

In the simulations, the warm water produces stationary Rossby waves, in which the peaks and valleys of the waves don't move, but the waves still transfer energy. In the northern hemisphere, the stationary Rossby waves cause air to circulate in a clockwise direction just to the west of the warm region. To the east of the warm region, the air swirls in the counterclockwise direction. These motions draw in cold air from the north, balancing the heating over the warm ocean waters.

To gain insight into the mechanisms that control the atmospheric dynamics, the researchers speed up Earth's rotation in the simulations. In those cases, the plume of cold air gets bigger—which is consistent with it being a stationary Rossby-wave plume. Most other atmospheric features would get smaller if the planet were to spin faster.

Although it's long been known that a heat source could produce Rossby waves, which can then form plumes, this is the first time anyone has shown how the mechanism causes cooling that extends west of the heat source. According to the researchers, the cooling effect could account for 30 to 50 percent of the temperature difference across oceans.

This process also explains why the cold region is just as big for both North America and Asia, despite the continents being so different in topography and size. The Rossby-wave induced cooling depends on heating air over warm ocean water. Since the warm currents along western ocean boundaries in both the Pacific and Atlantic are similar, the resulting cold region to their west would be similar as well.

The next step, Schneider says, is to build simulations that more realistically reflect what happens on Earth. Future simulations would incorporate more complex features like continents and cloud feedbacks.

The research described in the Nature paper, "Winter cold of eastern continental boundaries induced by warm ocean waters," was funded by the NOAA Climate and Global Change Postdoctoral Fellowship, administrated by the University Corporation for Atmospheric Research; a David and Lucille Packard Fellowship; and the National Science Foundation.

Writer: 
Marcus Woo
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News

Simons Argues Against Hazard Prevention Cuts

Less than two weeks after a 9.0 earthquake and tsunami devastated a large swath of Japan, Caltech geophysicist Mark Simons, in today's Wall Street Journal, calls attention to federal budget proposals that would cut funding for prevention technologies. "Mitigating against future disasters depends on monitoring hazardous regions (earthquake faults, volcanoes, landslides and so on) and preparing to survive and recover once catastrophe strikes," Simons says in the opinion piece. By cutting funding for advanced early-warning and response technologies, our country's long-term security is jeopardized, he argues. For the full story, click here.

Writer: 
Katie Neith
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Seismic Imaging Provides Bigger Picture for Earthquake Researchers

Caltech scientists and students are among a group of government and university researchers collecting seismic images of the Imperial and Coachella Valleys this week. The pictures—part of the U.S. Geological Survey's Salton Seismic Imaging Project (SSIP)—will help investigate the geometry of the San Andreas Fault, identify hidden faults, and provide more information about the composition of sediments in the area.

"By getting seismic images, we will be able to gain a better understanding of earthquake hazards for all of Southern California," says Caltech seismologist Joann Stock, a collaborating scientist on the project.

By knowing the geometry of the fault, as well as the thickness and shape of the sedimentary basins, she says, researchers can better predict how the ground will shake in future earthquakes.

SSIP uses small underground explosions and underwater bursts of compressed air to produce sound waves. The initial, transmitted sound waves reveal geologic structure by the way they bend or slow; sound waves reflected by rock layers help map the shapes and depths of those rocks and of the fault. These waves are recorded by more than 3,000 seismographs laid out in seven lines crisscrossing the valleys, then analyzed by powerful computers to produce detailed images of the Earth's crust.

There's no reason to worry that generating these kinds of seismic waves will trigger an earthquake, the scientists say. The explosive charges are small and set off 60 feet below the ground in a cased hole identical to a water well. Similar surveys in the past have shown the process to be safe and effective.

"The blasts are the size of quarry blasts, which happen in this region all the time, and they do not cause earthquakes," says Stock. "In fact, while the seismic network that records earthquakes is so sensitive that it often registers quarry blasts, so far, our blasts haven't even shown up on the network."

SSIP is part of the National Earthquake Hazards Reduction Program's ongoing efforts to protect lives and property in the event of an earthquake in Southern California and across the country. Funding for the project is provided by the National Science Foundation and the USGS.  

For more information on the project, visit the SSIP website.

Writer: 
Katie Neith
Writer: 

"Like It or Not, We Are Living on This Planet"

The number of large destructive earthquakes in 2010, plus a flurry of medium magnitude quakes in California, led many people to ask, Are we in a period of heightened temblor activity, and is it likely to continue? It's also raised questions among both scientists and laypeople about whether these events are related—and if so, how. The eruption of an Icelandic volcano, which disrupted air traffic in Europe for weeks, serves as an additional reminder that we live on a volatile planet. What, if anything, does this apparent uptick in geological activity portend, and how does it compare to events in Earth's past history? E&S sat down with Hiroo Kanamori, the Smits Professor of Geophysics, Emeritus, and Joe Kirschvink, the Van Wingen Professor of Geobiology, to hear their thoughts.

Between February and September 2010, earthquakes ranging from magnitude 6.8 to 8.8 occurred in regions as far-flung as Sumatra, China, Chile, New Zealand, and Baja, California. Are we in fact seeing more large quakes than usual?

Hiroo Kanamori: There are a couple of ways to answer this question. If you look at very major earthquakes, we are not seeing as much activity as between 1950 and 1965, when there were three events of magnitude 9 or greater in which an enormous amount of energy was released.

However, if we total up the number of quakes over magnitude 8 that have occurred since the first great Sumatran quake of 2004, we do find that these numbers really have increased. On average about one quake per year is magnitude 8 or larger. Since 2004, on average we have had two quakes of that size or more annually.

Is this statistically significant?

HK: We don't really know! Thanks to a study that's been going on for about the last 18 years, we do know a great deal more than we used to about triggering events in earthquakes. We now know that every large earthquake sends out seismic waves that can travel some distance and potentially activate seismic activity elsewhere. 

How well do scientists understand the physical mechanisms that might touch off a quake cascade like this?

HK: We have several different models and theories. The most straightforward mechanism would be one in which the seismic waves increase stress on other faults that they're passing through. If those faults are already close to rupture, this seismic impact may be enough to push things over the edge.

There are also cases in which this activity is delayed. This appears to be what happened this summer when the magnitude 7.2 quake that had occurred in Baja California in April touched off two moderate quakes in June and July on the San Jacinto fault in Southern California.

Joe, you've made in-depth studies of ancient geological upheavals. Can you put these recent events in perspective for us?

JK: Just to take volcanoes, the Icelandic eruption that we saw this spring was tiny compared to eruptions that have happened previously in Earth's history. In California alone, about three-quarters of a million years ago—which geologically is nothing—the Long Valley Caldera, between Mono Lake and Mammoth, blew its top. The eruption covered the southwestern United States with a blanket of ash that extended all the way to the Mississippi. The sediments that washed off from the Mississippi delta produced deposits that in some places were hundreds of meters thick. That episode was far, far worse than anything in human memory. There was a similar eruption about two million years ago in what is today Yellowstone. 

One question we often hear from both the public and the media is, will we ever be able to predict earthquakes the way we can—more or less—forecast the weather? What are your views?

HK: There are such fundamental differences between weather forecasting and earthquake prediction. With weather, the situation basically changes on an almost daily basis. With quakes, we are dealing with long-term processes in which the timescale for stress buildup and release is very long—100 to 1,000 years or more—while the length of time in which quakes occur is very short.

As I said earlier, we have made major advances in our understanding of how these seismic processes operate over these lengthy timescales. But to be able to say there's a strong likelihood that a magnitude 8 earthquake will occur in some specific area within the next hundred years or so is not necessarily very useful for the average layperson. You simply can't handle it like a weather forecast. If the forecast says, "rain tomorrow," you may take your umbrella, and either it rains or it doesn't. However, in the case of earthquakes, if you say that something big is going to happen tomorrow and nothing happens, that can be a problem. And that's really a key difference between climatology and seismology.

JK: I agree with Hiroo. If you want to see how completely distinct the two areas are, just turn the analogy around. Certainly, meteorology averaged over a very long period of time gives you climate. Or, to put it another way, climate is just long-term weather. But I certainly wouldn't advocate analyzing ancient climates to determine whether you'll have a thunderstorm next Tuesday.

To read the full interview, go to Engineering and Science online.

Writer: 
Heidi Aspaturian
Images: 
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News

Caltech Geobiologists Uncover Links between Ancient Climate Change and Mass Extinction

PASADENA, Calif.—About 450 million years ago, Earth suffered the second-largest mass extinction in its history—the Late Ordovician mass extinction, during which more than 75 percent of marine species died. Exactly what caused this tremendous loss in biodiversity remains a mystery, but now a team led by researchers at the California Institute of Technology (Caltech) has discovered new details supporting the idea that the mass extinction was linked to a cooling climate.

"While it’s been known for a long time that the mass extinction is intimately tied to climate change, the precise mechanism is unclear," says Seth Finnegan, a postdoctoral researcher at Caltech and the first author of the paper published online in Science on January 27. The mass extinction coincided with a glacial period, during which global temperatures cooled and the planet saw a marked increase in glaciers. At this time, North America was on the equator, while most of the other continents formed a supercontinent known as Gondwana that stretched from the equator to the South Pole.

By using a new method to measure ancient temperatures, the researchers have uncovered clues about the timing and magnitude of the glaciation and how it affected ocean temperatures near the equator. "Our observations imply a climate system distinct from anything we know about over the last 100 million years," says Woodward Fischer, assistant professor of geobiology at Caltech and a coauthor.

The fact that the extinction struck during a glacial period, when huge ice sheets covered much of what's now Africa and South America, makes it especially difficult to evaluate the role of climate. "One of the biggest sources of uncertainty in studying the paleoclimate record is that it’s very hard to differentiate between changes in temperature and changes in the size of continental ice sheets," Finnegan says. Both factors could have played a role in causing the mass extinction: with more water frozen in ice sheets, the world’s sea levels would have been lower, reducing the availability of shallow water as a marine habitat. But differentiating between the two effects is a challenge because until now, the best method for measuring ancient temperatures has also been affected by the size of ice sheets.

The conventional method for determining ancient temperature requires measuring the ratios of oxygen isotopes in minerals precipitated from seawater. The ratios depend on both temperature and the concentration of isotopes in the ocean, so the ratios reveal the temperature only if the isotopic concentration of seawater is known. But ice sheets preferentially lock up one isotope, which reduces its concentration in the ocean. Since no one knows how big the ice sheets were, and these ancient oceans are no longer available for scientists to analyze, it's hard to determine this isotopic concentration. As a result of this "ice-volume effect," there hasn’t been a reliable way to know exactly how warm or cold it was during these glacial periods.

Rock strata on Anticosti Island, Quebec, Canada, one of the sites from which the researchers collected fossils.

But by using a new type of paleothermometer developed in the laboratory of John Eiler, Sharp Professor of Geology and professor of geochemistry at Caltech, the researchers have determined the average temperatures during the Late Ordovician—marking the first time scientists have been able to overcome the ice-volume effect for a glacial episode that happened hundreds of millions of years ago. To make their measurements, the researchers analyzed the chemistry of fossilized marine animal shells collected from Quebec, Canada, and from the midwestern United States.

The Eiler lab’s method, which does not rely on the isotopic concentration of the oceans, measures temperature by looking at the "clumpiness" of heavy isotopes found in fossils. Higher temperatures cause the isotopes to bond in a more random fashion, while low temperatures lead to more clumping.

"By providing independent information on ocean temperature, this new method allows us to know the isotopic composition of 450-million-year-old seawater," Finnegan says. "Using that information, we can estimate the size of continental ice sheets through this glaciation." And with a clearer idea of how much ice there was, the researchers can learn more about what Ordovician climate was like—and how it might have stressed marine ecosystems and led to the extinction.

"We have found that elevated rates of climate change coincided with the mass extinction," says Aradhna Tripati, a coauthor from UCLA and visiting researcher in geochemistry at Caltech.

The team discovered that even though tropical ocean temperatures were higher than they are now, moderately sized glaciers still existed near the poles before and after the mass extinction. But during the extinction intervals, glaciation peaked. Tropical surface waters cooled by five degrees, and the ice sheets on Gondwana grew to be as large as 150 million cubic kilometers—bigger than the glaciers that covered Antarctica and most of the Northern Hemisphere during the modern era’s last ice age 20,000 years ago.

"Our study strengthens the case for a direct link between climate change and extinction," Finnegan says. "Although polar glaciers existed for several million years, they only caused cooling of the tropical oceans during the short interval that coincides with the main pulse of mass extinction."

In addition to Finnegan, Eiler, Tripati, and Fischer, the other authors on the Science paper, "The magnitude and duration of Late Ordovician-Early Silurian glaciation magnitude," are Kristin Bergmann, a graduate student at Caltech; David Jones of Amherst College; David Fike of Washington University in St. Louis; Ian Eisenman, a postdoctoral scholar at Caltech and the University of Washington; and Nigel Hughes of the University of California, Riverside.

This research was funded by the Agouron Institute and the National Science Foundation.
 

Writer: 
Marcus Woo
Writer: 

New Flume On the Block

Last Wednesday morning, Caltech received a rather large delivery. About 50 feet long and 5 feet wide, a big black chunk of metal was unloaded from a truck and slowly pushed into the Central Engineering Services Building.

The 30,000-pound shipment, arriving from Wisconsin, was a giant chute, the showpiece of the new Earth Surface Dynamics Laboratory—also called the Flume Lab—that’s being assembled in the warehouse. Michael Lamb, assistant professor of geology, along with a team of engineers and geologists, had been designing the new facility for more than three years. And after more than two years of designing, building, and testing, the main component finally arrived, putting the “flume” in Flume Lab.

Once completed, the lab will be a state-of-the-art facility used by Lamb and his colleagues to study how water and sediment flow in carefully controlled settings—a near-impossible task in nature. Only a handful of labs like this exist in the world, Lamb says. From these experiments, the researchers hope to learn more about the dangers of mudslides and other debris flows—hopefully saving lives as a result. They will also study the role of river flows and erosion in climate change and try to understand the fundamental processes that shape Earth’s landscape.

Work on the lab space has been under way for more than a year. First, the space, formerly a machine shop, had to be cleared out. Then, a large hole—about 16 by 45 feet in area and about 15 feet deep—was dug out to make room for a massive water pump and reservoir. About a dozen 30-foot, corkscrew-shaped posts were inserted underground to hold the weight of the new equipment. As one of the last steps before installing the flume, the steel support columns were erected.

“I came in last night and saw these columns for the first time, and I thought, holy tamales—this is going to be cool,” Lamb says.

When the flume arrived, crews put it on rollers and gently nudged it along with a crane, working into the early afternoon to maneuver it into place at the back of the warehouse. Prior to the flume’s arrival, workers from Facilities cut an eight-foot opening in a concrete wall to make way for the new addition. After negotiating the narrow passageway, the flume had to squeeze between the steel columns that supported the building. It was a tight fit, to say the least. (Watch a time-lapse video of the flume fitting into place.)

After a long ride from Wisconsin, the flume is unloaded from the truck.
Credit: Marcus Woo


The flume will be able to tilt up to 15 degrees, allowing water, pebbles, rocks, and other sediments to stream toward the bottom, where the water is collected in a reservoir that can hold 20,000 gallons. An experiment will be able to run continuously, as a conveyor belt and water pump—capable of forcing 8,000 gallons per minute—bring the sediment and water, respectively, back to the top.

More parts of the lab will come in over the next few weeks, as it will take a couple of months to finish construction. Lamb says he’s hopeful that the first experiments will run in March. “It’s going to be really exciting,” he adds. “We’re going to observe things that nobody has ever seen before.”

For more photos of the construction in progress, see the laboratory page here.

Writer: 
Marcus Woo
Writer: 

Thomas J. Ahrens, 74

Thomas J. Ahrens, the Fletcher Jones Professor of Geophysics, Emeritus, at Caltech, died at his home in Pasadena on November 24. He was 74.

An expert in the behavior and properties of rocks and minerals undergoing shock compression, Ahrens studied the dynamics of high-pressure materials inside Earth and other planets. His research also included planetary impacts and the formation of craters and planets.

"Tom was both a highly productive and broadly knowledgeable scientist and a dedicated mentor to dozens of students, postdocs, and visitors who now fill the ranks of mineral physics positions at universities around the world," says Professor of Geology and Geochemistry Paul Asimow, who credits Ahrens as his most important mentor while Asimow was a junior faculty member at Caltech. Together, they ran the Lindhurst Laboratory of Experimental Geophysics, which Ahrens built in 1974 when the Seismological Laboratory moved to South Mudd. "Our relationship was symbiotic," Asimow says. "Tom wanted to ensure beyond his retirement the ongoing productivity of the remarkable lab that he built, and I wanted to learn from his accumulated wisdom and to carry out experiments in a lab far beyond the scale and expense of anything I would have considered building from scratch."

Some of Ahrens's most important contributions, according to Asimow, were in developing experimental methods for measuring shock temperatures and the density of liquids at high pressure. When applied to iron, the first technique allowed researchers to determine the temperature structure of Earth's core. The second method is so far the only way to measure the density of molten rocks that might form in Earth's mantle at depths greater than a few hundred kilometers. Ahrens's work has led to a basic understanding of how objects—such as meteorites and comets—carrying volatile materials smash into planets. His research has provided insight into the source and origin of water on Earth and into the environmental effects of meteorite collisions such as the one that struck Earth 65 million years ago and likely led to the extinction of the dinosaurs.

Born in Germany, Ahrens received his BS from the Massachusetts Institute of Technology in 1957, his MS from Caltech in 1958, and his PhD from Rensselaer Polytechnic Institute in 1962. He was a geophysicist with the Pan American Petroleum Corporation from 1958 to 1959, worked as a second lieutenant for the U.S. Army in the Ballistics Research Laboratory from 1959 to 1960, and was the head of the geophysics section in the Poulter Laboratory of the Stanford Research Institute from 1962 to 1967. He joined Caltech in 1967 as an associate professor of geophysics. He became professor of geophysics in 1976 and was the W. M. Keck Foundation Professor of Earth Sciences from 1996 to 2001; he was named the Fletcher Jones Professor of Geophysics in 2004 and became Jones Professor, Emeritus, in 2005.  

Ahrens published more than 375 papers, held three U.S. patents, and received numerous honors and awards for his research. He was a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and was a Foreign Associate of the Russian Academy of Sciences. He won the 1995 Arthur L. Day Medal of the Geological Society of America, the 1996 Harry H. Hess Medal of the American Geophysical Union, and the 1997 Barringer Medal of the Meteoritical Society, and he had an asteroid named after him.

He is survived by his wife, Earleen; children Earl, Eric, and Dawn; and grandchildren Greta, Violet, Jacqueline, and Samuel.

 

Writer: 
Marcus Woo
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Recent News on the Debate over Pluto's Planethood

Earlier this month, Eris—the distant world first discovered by Caltech's Mike Brown and colleagues back in 2005, paving the way for the eventual demotion of Pluto from planet to dwarf planet—passed fortuitously in front of a faint star in the constellation Cetus. That passage, or occultation, allowed the first direct measurement of Eris's size. And it produced a surprising result that reignited—in the media, at least—the debate over Pluto's planethood: Eris and Pluto are, within the uncertainties, essentially the same size. But since Eris is 27% more massive than Pluto, Eris is substantially denser. The two objects, once thought to be slightly differently sized twins, are in fact very different.

But does this really mean that Pluto's demotion was unjustified?

Certainly not, Brown says. Pluto was not demoted simply because it was thought to be smaller than Eris, he explains, so even though the two are now known to be essentially the same size, the logic behind keeping both of them out of the planetary club remains the same. What is different, he says, is how much more interesting this discovery makes Eris.

"When we first discovered Eris, we thought it was just a slightly larger copy of Pluto. Finding a slightly larger copy doesn't teach you much more than the original, so even though Eris was always important to the public, it never garnered that much attention from astronomers, " Brown says. "Now that we know it has a substantially different composition from Pluto, we are scrambling to figure out ways to understand how a planetary system can produce such seemingly different objects out of what is supposed to be the same material."

Read more about these new observations in Brown's blog, "Mike Brown's Planets."

Writer: 
Kathy Svitil
Writer: 

Caltech Receives $10 Million in Gifts to Help Launch New Terrestrial Hazard Center

Center will focus on developing innovative ways to reduce the risks and costs of natural hazards

PASADENA, Calif.-In an effort to find ways to minimize the damage caused by natural hazards, the California Institute of Technology (Caltech) has established the Terrestrial Hazard Observation and Reporting Center (THOR), funded by $6.7 million from Foster and Coco Stanback of Irvine, California, and $3.35 million from the Gordon and Betty Moore matching program.

THOR will have the unique mandate of bringing together-under one program-innovative efforts to reduce the risks and costs associated with natural hazards. The center will span two divisions at Caltech, Geological and Planetary Sciences (GPS) and Engineering and Applied Science (EAS).

The study of natural hazards and solutions is ordinarily undertaken in separate academic disciplines with little intellectual interaction. THOR will provide a new focal point that will unify these efforts and allow investigators to focus on critical societal issues.

"From the current flooding in Pakistan, to the recent earthquake in Haiti, to the constant threat of wildfires in our own backyard, we are consistently reminded of the devastating impact natural hazards can have on society," says Caltech president Jean-Lou Chameau. "Now, with the generous support of Foster and Coco Stanback, Caltech scientists and engineers will be able to study these critical issues in a unique interdisciplinary environment.  THOR will help communities around the world determine how to best prepare for, anticipate, and respond to various natural hazards, hopefully saving lives in the process." 

Natural hazards that will fall under THOR's purview include global climate change, earthquakes, tsunamis, landslides, wildfires, and extreme weather events such as droughts, among others.

By providing support for the development of techniques and physical inventions, THOR will focus on practical societal aspects of natural hazards and their public policy implications.

For instance, THOR may help guide the distribution of limited resources following a major hazard such as an earthquake or tsunami, or lead to early-warning systems.

"The interdisciplinary and interactive nature of engineering at Caltech allows us to translate scientific knowledge and discovery into applications with direct societal impact," says Ares Rosakis, the von Kármán Professor of Aeronautics, professor of mechanical engineering, and chair of the division of Engineering and Applied Science. "One of the areas of pioneering research and innovation made possible by THOR is seismo-engineering. The boundaries of seismo-engineering are fuzzy ones and lie exactly in the interface between seismology and earthquake engineering.  We are delighted to have the opportunity to explore these boundaries."

Caltech has a number of highly visible areas of expertise that already touch on natural-hazard issues, including the Seismological Laboratory, the Linde Center for Global Environmental Science, missions of the Caltech-managed Jet Propulsion Laboratory (JPL) that provide critical high-precision data on Earth's climate and environment, multiple studies supported by the Keck Institute for Space Studies (KISS) focused on future Earth-observing missions, and the Resnick Institute for Science, Energy, and Sustainability.   

"The THOR center will provide a unique platform for collaboration among scientists, students, and policymakers, empowering them with the extensive resources of Caltech and the Jet Propulsion Laboratory," says THOR donor Foster Stanback. "By linking our eyes in the sky with the many eyes on the ground, we will be far better prepared to anticipate, mitigate, and eliminate many environmental hazards."

THOR's attention and resources will be applied in several ways, including the dissemination of the results of work supported by THOR; supporting efforts to transfer ideas and technologies that show promise of practical implementation; and prioritizing, seeding, and nurturing ideas encompassing research activities, along with the invention of technologies.

"THOR will give faculty in GPS and EAS the opportunity to develop innovative new ways to help mitigate the consequences and costs of the natural hazards society faces, from climate change to earthquakes to water scarcity," says Ken Farley, the W.M. Keck Foundation Professor of Geochemistry and chair of the division of Geological and Planetary Sciences. "This very applied research is difficult to support from federal sources, so my hope is that the gift will catalyze entirely new endeavors. THOR will also allow us to bring to our educational program a new focus on the societal and policy implications and relevance of our work."

The center will be housed within the newly renovated Linde + Robinson Laboratory on the Caltech campus.

Writer: 
Jon Weiner
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Pages

Subscribe to RSS - GPS