White House Puts Spotlight on Earthquake Early-Warning System

Since the late 1970s, Caltech seismologist Tom Heaton, professor of engineering seismology, has been working to develop earthquake early-warning (EEW) systems—networks of ground-based sensors that can send data to users when the earth begins to tremble nearby, giving them seconds to potentially minutes to prepare before the shaking reaches them. In fact, Heaton wrote the first paper published on the concept in 1985. EEW systems have been implemented in countries like Japan, Mexico, and Turkey. However, the Unites States has been slow to regard EEW systems as a priority for the West Coast.

But on February 2, 2016, the White House held the Earthquake Resilience Summit, signaling a new focus on earthquake safety and EEW systems. There, stakeholders—including Caltech's Heaton and Egill Hauksson, research professor in geophysics; and U.S. Geological Survey (USGS) seismologist Lucy Jones, a visiting associate in geophysics at Caltech and seismic risk advisor to the mayor of Los Angeles—discussed the need for earthquake early warning and explored steps that can be taken to make such systems a reality. 

At the summit, the Gordon and Betty Moore Foundation announced $3.6 million in grants to advance a West Coast EEW system called ShakeAlert, which received an initial $6 million in funding from foundation in 2011. The new grants will go to researchers working on the system at Caltech, the USGS, UC Berkeley, and the University of Washington.

"We have been successfully operating a demonstration system for several years, and we know that it works for the events that have happened in the test period," says Heaton. "However, there is still significant development that is required to ensure that the system will work reliably in very large earthquakes similar to the great 1906 San Francisco earthquake. This new funding allows us to accelerate the rate at which we develop this critical system."

In addition, the Obama Administration outlined new federal commitments to support greater earthquake safety including an executive order to ensure that new construction of federal buildings is up to code and that federal assets are available for recovery efforts after a large earthquake.

The commitments follow a December announcement from Congressman Adam Schiff (D-Burbank) that Congress has included $8.2 million in the fiscal year 2016 funding bill specifically designated for a West Coast earthquake early warning system.

"By increasing the funding for the West Coast earthquake early-warning system, Congress is sending a message to the Western states that it supports this life-saving system. But the federal government cannot do it alone and will need local stakeholders, both public and private, to get behind the effort with their own resources," said Schiff, in a press release. "The early warning system will give us critical time for trains to be slowed and surgeries to be stopped before shaking hits—saving lives and protecting infrastructure. This early warning system is an investment we need to make now, not after the 'big one' hits."

ShakeAlert utilizes a network of seismometers—instruments that measure ground motion—widely scattered across the Western states. In California, that network of sensors is called the California Integrated Seismic Network (CISN) and is made up of computerized seismometers that send ground-motion data back to research centers like the Seismological Laboratory at Caltech.

Here's how the current ShakeAlert works: a user display opens in a pop-up window on a recipient's computer as soon as a significant earthquake occurs in California. The screen lists the quake's estimated location and magnitude based on the sensor data received to that point, along with an estimate of how much time will pass before the shaking reaches the user's location. The program also gives an approximation of how intense that shaking will be. Since ShakeAlert uses information from a seismic event in progress, people living near the epicenter do not get much—if any—warning, but those farther away could have seconds or even tens of seconds' notice.

The goal is an improved version of ShakeAlert that will eventually give schools, utilities, industries, and the general public a heads-up in the event of a major temblor.

Read more about how ShakeAlert works and about Caltech's development of EEW systems in a feature that ran in the Summer 2013 issue of E&S magazine called Can We Predict Earthquakes?

Writer: 
Katie Neith
Home Page Title: 
White House Spotlights Quake Warning System
Contact: 
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
On February 2, 2016, the White House held the Earthquake Resilience Summit, signaling a new focus on earthquake safety and EEW systems.

Developing a Picture of the Earth's Mantle

Deep inside the earth, seismic observations reveal that three distinct structures make up the boundary between the earth's metallic core and overlying silicate mantle at a depth of about 2,900 kilometers—an area whose composition is key to understanding the evolution and dynamics of our planet. These structures include remnants of subducted plates that originated near the earth's surface, ultralow-velocity zones believed to be enriched in iron, and large dense provinces of unknown composition and mineralogy. A team led by Caltech's Jennifer Jackson, professor of mineral physics has new evidence for the origin of these features that occur at the core-mantle boundary.

"We have discovered that bridgmanite, the most abundant mineral on our planet, is a reasonable candidate for the material that makes up these dense provinces that occupy about 20 percent of the core-mantle boundary surface, and rise up to a depth of about 1,500 kilometers. Integrated by volume that's about the size of our moon!" says Jackson, coauthor of a study that outlines these findings and appears online in the Journal of Geophysical Research: Solid Earth. "This finding represents a breakthrough because although bridgmanite is the earth's most abundant mineral, we only recently have had the ability to precisely measure samples of it in an environment similar to what we think the materials are experiencing inside the earth."

Previously, says Jackson, it was not clear whether bridgmanite, a perovskite structured form of (Mg,Fe)SiO3, could explain seismic observations and geodynamic modeling efforts of these large dense provinces. She and her team show that indeed they do, but these structures need to be propped up by external forces, such as the pinching action provided by cold and dense subducted slabs at the base of the mantle.

Jackson, along with then Caltech graduate student Aaron Wolf (PhD '13), now a research scientist at the University of Michigan at Ann Arbor, and researchers from Argonne National Laboratory, came to these conclusions by taking precise X-ray measurements of synthetic bridgmanite samples compressed by diamond anvil cells to over 1 million times the earth's atmospheric pressure and heated to thousands of degrees Celsius.

The measurements were done utilizing two different beamlines at the Advanced Photon Source of Argonne National Laboratory in Illinois, where the team used powerful X-rays to measure the state of bridgmanite under the physical conditions of the earth's lower mantle to learn more about its stiffness and density under such conditions. The density controls the buoyancy—whether or not these bridgmanite provinces will lie flat on the core-mantle boundary or rise up. This information allowed the researchers to compare the results to seismic observations of the core-mantle boundary region.

"With these new measurements of bridgmanite at deep-mantle conditions, we show that these provinces are very likely to be dense and iron-rich, helping them to remain stable over geologic time," says Wolf.

Using a technique known as synchrotron Mössbauer spectroscopy, the team also measured the behavior of iron in the crystal structure of bridgmanite, and found that iron-bearing bridgmanite remained stable at extreme temperatures (more than 2,000 degrees Celsius) and pressure (up to 130 gigapascals). There had been some reports that iron-bearing bridgmanite breaks down under extreme conditions, but the team found no evidence for any breakdown or reactions.

"This is the first study to combine high-accuracy density and stiffness measurements with Mössbauer spectroscopy, allowing us to pinpoint iron's behavior within bridgmanite," says Wolf. "Our results also show that these provinces cannot possibly contain a large complement of radiogenic elements, placing strong constraints on their origin. If present, these radiogenic elements would have rapidly heated and destabilized the piles, contradicting many previous simulations that indicate that they are likely hundreds of millions of years old."

In addition, the experiments suggest that the rest of the lower mantle is not 100 percent bridgmanite as had been previously suggested. "We've shown that other phases, or minerals, must be present in the mantle to satisfy average geophysical observations," says Jackson. "Until we made these measurements, the thermal properties were not known with enough precision and accuracy to uniquely constrain the mineralogy."

"There is still a lot of work to be done, such as identifying the dynamics of subducting slabs, which we believe plays a role in providing an external force to shape these large bridgmanite provinces," she says. "We know that the earth did not start out this way. The provinces had to evolve within the global system, and we think these findings may help large-scale geodynamic modeling that involves tectonic plate reconstructions."

The results of the study were published in a paper titled "The thermal equation of state of (Mg,Fe)SiO3bridgmanite (perovskite) and implications for lower mantle structures." In addition to Jackson and Wolf, other authors on the study are Przemeslaw Dera and Vitali B. Prakapenka from the Center for Advanced Radiation Sources at Argonne National Laboratory. Support for this research was provided by the National Science Foundation, the Turner Postdoctoral Fellowship at the University of Michigan, and the California Institute of Technology.

Home Page Title: 
Developing a Picture of the Earth's Mantle
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
A team led by Caltech's Jennifer Jackson, professor of mineral physics has new evidence for the origin of features that occur at the core-mantle boundary.
Monday, November 30, 2015

Microbial diners, drive-ins, and dives: deep-sea edition

rpyle's picture

Probing the Mysteries of Europa, Jupiter's Cracked and Crinkled Moon

New research identifies possible sites of frozen, watery deposits.

Jupiter's moon Europa is believed to possess a large salty ocean beneath its icy exterior, and that ocean, scientists say, has the potential to harbor life. Indeed, a mission recently suggested by NASA would visit the icy moon's surface to search for compounds that might be indicative of life. But where is the best place to look? New research by Caltech graduate student Patrick Fischer; Mike Brown, the Richard and Barbara Rosenberg Professor and Professor of Planetary Astronomy; and Kevin Hand, an astrobiologist and planetary scientist at JPL, suggests that it might be within the scarred, jumbled areas that make up Europa's so-called "chaos terrain."

A paper about the work has been accepted to The Astronomical Journal.

"We have known for a long time that Europa's fresh icy surface, which is covered with cracks and ridges and transform faults, is the external signature of a vast internal salty ocean," Brown says. The areas of chaos terrain show signatures of vast ice plates that have broken apart, shifted position, and been refrozen. These regions are of particular interest, because water from the oceans below may have risen to the surface through the cracks and left deposits there.

"Directly sampling Europa's ocean represents a major technological challenge and is likely far in the future," Fischer says. "But if we can sample deposits left behind in the chaos areas, it could reveal much about the composition and dynamics of the ocean below." That ocean is thought to be as deep as 100 kilometers.

"This could tell us much about activity at the boundary of the rocky core and the ocean," Brown adds.

In a search for such deposits, the researchers took a new look at data from observations made in 2011 at the W. M. Keck Observatory in Hawaii using the OSIRIS spectrograph. Spectrographs break down light into its component parts and then measure their frequencies. Each chemical element has unique light-absorbing characteristics, called spectral or absorption bands. The spectral patterns resulting from light absorption at particular wavelengths can be used to identify the chemical composition of Europa's surface minerals by observing reflected sunlight.

The OSIRIS instrument measures spectra in infrared wavelengths. "The minerals we expected to find on Europa have very distinct spectral fingerprints in infrared light," Fischer says. "Combine this with the extraordinary abilities of the adaptive optics in the Keck telescope, and you have a very powerful tool." Adaptive optics mechanisms reduce blurring caused by turbulence in the earth's atmosphere by measuring the image distortion of a bright star or laser and mechanically correcting it.

The OSIRIS observations produced spectra from 1600 individual spots on Europa's surface. To make sense of this collection of data, Fischer developed a new technique to sort and identify major groupings of spectral signatures.

"Patrick developed a very clever new mathematical tool that allows you to take a collection of spectra and automatically, and with no preconceived human biases, classify them into a number of distinct spectra," Brown says. The software was then able to correlate these groups of readings with a surface map of Europa from NASA's Galileo mission, which mapped the Jovian moon beginning in the late 1990s. The resulting composite provided a visual guide to the composition of the regions the team was interested in.

Three compositionally distinct categories of spectra emerged from the analysis. The first was water ice, which dominates Europa's surface. The second category includes chemicals formed when ionized sulfur and oxygen­­—thought to originate from volcanic activity on the neighboring moon Io­­—bombard the surface of Europa and react with the native ices. These findings were consistent with results of previous work done by Brown, Hand and others in identifying Europa's surface chemistry.

But the third grouping of chemical indicators was more puzzling. It did not match either set of ice or sulfur groupings, nor was it an easily identified set of salt minerals such as they might have expected from previous knowledge of Europa. Magnesium is thought to reside on the surface but has a weak spectral signature, and this third set of readings did not match that either. "In fact, it was not consistent with any of the salt materials previously associated with Europa," Brown says.

When this third group was mapped to the surface, it overlaid the chaos terrain. "I was looking at the maps of the third grouping of spectra, and I noticed that it generally matched the chaos regions mapped with images from Galileo. It was a stunning moment," Fischer says. "The most important result of this research was understanding that these materials are native to Europa, because they are clearly related to areas with recent geological activity."

The composition of the deposits is still unclear. "Unique identification has been difficult," Brown says. "We think we might be looking at salts left over after a large amount of ocean water flowed out onto the surface and then evaporated away. He compares these regions to their earthly cousins. "They may be like the large salt flats in the desert regions of the world, in which the chemical composition of the salt reflects whatever materials were dissolved in the water before it evaporated."

Similar deposits on Europa could provide a view into the oceans below, according to Brown. "If you had to suggest an area on Europa where ocean water had recently melted through and dumped its chemicals on the surface, this would be it. If we can someday sample and catalog the chemistry found there, we may learn something of what's happening on the ocean floor of Europa and maybe even find organic compounds, and that would be very exciting." 

Home Page Title: 
New Research on Europa
Writer: 
Exclude from News Hub: 
No
Short Title: 
New Research on Europa
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
Researchers have mapped what may be salt deposits from the ocean below the ice onto the Jovian moon's surface.

Taking Dinosaur Temperatures with Eggshells

Researchers know dinosaurs once ruled the earth, but they know very little about how these animals performed the basic task of balancing their energy intake and output—how their metabolisms worked. Now, a team of Caltech researchers that has measured the body temperatures of a wide range of dinosaurs has provided insight into how the animals may have regulated their internal heat.

The study was led by John Eiler, the Robert P. Sharp Professor of Geology and professor of geochemistry, and Rob Eagle, a former Caltech postdoctoral scholar now at UCLA. A paper describing the research appears in the October 13 issue of the journal Nature Communications.

The current study examined eggshells from the sauropods, a group that includes some of the biggest dinosaurs ever to live, called Titanosaurs, as well as eggshells of birdlike and approximately human-sized oviraptorid dinosaurs. The eggshells were analyzed to determine the extent to which carbon-13 and oxygen-18—rare, naturally occurring isotopes (variant forms of elements that differ in number of neutrons)—group together in the mineral structure. This "clumping" of rare isotopes previously has been shown to depend on mineral growth temperature. The eggshell data were compared with the results of a previous study by this same group that used similar techniques to examine the growth temperatures of the sauropod dinosaurs, including the giraffe-like Giraffatitan and a giant herbivore known as Camarasaurus.


A large clutch of titanosaur eggs that has been cleaned for research. Credit: Luis Chiappe, LA County Natural History Museum

The isotopic composition of the eggshells showed that smaller oviraptorid dinosaurs had body temperatures of 32 degrees Celsius—decidedly cooler than modern mammals and birds. The body temperatures of the larger Titanosaur dinosaurs were 38 degrees Celsius, indistinguishable from a previous finding for Giraffatitan teeth and similar to modern mammals. This finding—that larger dinosaurs maintained body temperatures like ours whereas smaller ones more closely resembled modern reptiles—has implications for our understanding of dinosaur physiology.

Modern mammals are described as warm blooded if they regulate their own temperature, as if tweaking an internal thermostat. In a process called endothermy, warm-blooded mammals utilize the heat generated by their own internal functions instead of drawing ambient heat from the environment, which is what a cold-blooded snake or lizard does by basking in the sun. Endothermy is relatively similar across many different sizes of mammals, from mice to humans to whales.

"Measuring cooler temperatures in small dinosaurs is the first evidence to suggest that at least some of them had lower basal metabolisms than most modern mammals and birds, and therefore the emergence of modern mechanisms of endothermy hadn't occurred in these dinosaurs," Eiler says.

The picture is not so clear for the larger dinosaurs that were studied. Although Eiler and his colleagues found that they had warm body temperatures similar to modern mammals, it is not known if the animals actually had endothermic metabolisms or if they were warm simply because of their enormous sizes—a phenomenon known as gigantothermy. Gigantotherms have small surface areas relative to their large volumes and thus have less area through which they can lose heat. Therefore, the heat is trapped internally. "If you weigh 80 tons, your problem is not staying warm—it's trying not to burst into flames," Eiler says.

The wide range of warm temperatures discovered among the various dinosaur species examined in the study suggests that "either they had a range of different metabolic strategies, or they all had low basal metabolisms, and the large ones were only warm due to gigantothermy," Eiler says.

The technique used to determine these animal body temperatures was first conceived and used by Eiler's group in 2011 on dinosaur tooth fossils and is related to methods they previously developed for nonbiological minerals and molecules. The method, called the clumped-isotope technique, relies on measurements of rare isotopes in bioapatite, or biologically grown calcium carbonate, a mineral present in bones, teeth, eggshells, and other fossils. In 2006, Eiler's lab quantified the degree to which carbon-13 and carbon-18 clump together to varying degrees in a biomineral, depending on the temperature at the time the mineral formed; this relationship subsequently was examined for many mineral types by Eiler's group at Caltech and at other laboratories.

"There's this cool idea that if I had a fossil skeleton, I could map the body temperature of the entire creature and come up with a physiological model of how it redistributed heat within its body," Eiler says. "There's no reason you couldn't do that, except that bone isn't very well preserved."

The team's next step is to compare fossils from the same species across stages of maturation. "It may be that some dinosaurs have a different metabolic strategy at different phases of life," Eiler says.

Writer: 
Lori Dajose
Tags: 
Home Page Title: 
Understanding Dinosaurs
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Exclude from Home Page: 
Home Page Summary: 
Researchers who have measured dinosaurs' body temperature using eggshells are providing insight into how the animals may have regulated their internal heat.

Getting the Lead Out

Caltech geochemist Clair Patterson (1922–1995) helped galvanize the environmental movement 50 years ago when he announced that highly toxic lead could be found essentially everywhere on Earth, including in our own bodies—and that very little of it was due to natural causes.

In a paper published in the September 1965 issue of Archives of Environmental Health, Patterson challenged the prevailing belief that industrial and natural sources contributed roughly equal amounts of ingestible lead, and that the aggregate level we absorbed was safe. Instead, he wrote, "A new approach to this matter suggests that the average resident of the United States is being subjected to severe chronic lead insult." He estimated that our "lead burden" was as much as 100 times that of our preindustrial ancestors—often to just below the threshold of acute toxicity.

Lead poisoning was known to the ancients. Vitruvius, designer of aqueducts for Julius Caesar, wrote in Book VIII of De Architectura that "water is much more wholesome from earthenware pipes than from lead pipes . . . [water] seems to be made injurious by lead." Lead accumulates in the body, where it can have profound effects on the central nervous system. Children exposed to high lead levels often acquire permanent learning disabilities and behavioral disorders.

When Patterson arrived at Caltech as a research fellow in geochemistry in 1952, he was looking not to save the world but to figure out how old it was. Doing so required him to measure the precise amounts of various isotopes of uranium and lead. (Isotopes are atoms of the same element that contain different numbers of neutrons in their nuclei.) Uranium-238 decays very, very slowly into lead-206, while uranium-235 decays less slowly into lead-207. Both rates are well known, so measuring the ratios of lead atoms to uranium ones shows how much uranium has disappeared and allows the sample's age to be calculated.

Patterson presumed that the inner solar system's rocky planets and meteorites had all coalesced at the same time, and that the meteorites had survived essentially unchanged ever since. Using an instrument called a mass spectrometer and working in a clean room he had designed and built himself, Patterson counted the individual lead atoms in a meteorite sample recovered from Canyon Diablo near Meteor Crater, Arizona. In a landmark paper published in 1956, he established Earth's age as 4.55 billion years.

However, there are four common isotopes of lead, and Patterson had to take them all into account in his calculations. He had announced his findings at a conference in 1955, and he had continued to refine his results as the paper worked its way through the review process. But there he hit a snag—his analytical skills had become so finely honed that he was finding lead everywhere. He needed to know the source of this contamination in order to eliminate it, and he took it on himself to find out.

Patterson's 1965 Environmental Health paper summarized that work. With M. Tatsumoto of the U.S. Geological Survey, he found that the ocean off of southern California was lead-laden at the surface but that the contamination disappeared rapidly with depth. They concluded that the likely culprit was tetraethyl lead, a widespread gasoline additive that emerged from the tailpipe of automobiles as very fine lead particles. Patterson and research fellow T. J. Chow crisscrossed the Pacific aboard research vessels run by the Scripps Institution of Oceanography at UC San Diego and found the same profile of lead levels versus depth. Then, in the winter of 1962–63, Patterson and Tatsumoto collected snow at an altitude of 7,000 feet on Mount Lassen in northern California. The lead contamination there was 10 to 100 times worse than at sea. Patterson concluded that it had fallen from the skies. Its isotopic fingerprint was a perfect match for air samples from Los Angeles—located 500 miles to the south. It also matched gasoline samples obtained by Chow in San Diego. Furthermore, the isotope fingerprint was different from that of lead found in prehistoric sediments off the California coast.

"The atmosphere of the northern hemisphere contains about 1,000 times more than natural amounts of lead," Patterson wrote, and he called for the "elimination of some of the most serious sources of lead pollution such as lead alkyls [i.e., tetraethyl lead], insecticides, food can solder, water service pipes, kitchenware glazes, and paints; and a reevaluation by persons in positions of responsibility in the field of public health of their role in the matter."

Patterson's paper was his first shot in the war against lead pollution, bureaucratic inertia, and big business that he would wage for the rest of his life. He won: the Clean Air Act of 1970 authorized the development of national air-quality standards, including emission controls on cars. In 1976, the Environmental Protection Agency reported that more than 100,000 tons of lead went into gasoline every month; by 1980 that figure would be less than 50,000 tons, and the concentration of lead in the average American's blood would drop by nearly 50 percent as well. The Consumer Product Safety Commission would ban lead-based indoor house paints in 1977 (flakes containing brightly colored lead pigments often found their way into children's mouths). And in 1986, the EPA prohibited tetraethyl lead in gasoline.

Writer: 
Douglas Smith
Home Page Title: 
Getting the Lead Out
Listing Title: 
Getting the Lead Out
Writer: 
Exclude from News Hub: 
No
Short Title: 
Getting the Lead Out
News Type: 
Research News

Caltech-Led Team Looks in Detail at the April 2015 Earthquake in Nepal

For more than 20 years, Caltech geologist Jean-Philippe Avouac has collaborated with the Department of Mines and Geology of Nepal to study the Himalayas—the most active, above-water mountain range on Earth—to learn more about the processes that build mountains and trigger earthquakes. Over that period, he and his colleagues have installed a network of GPS stations in Nepal that allows them to monitor the way Earth's crust moves during and in between earthquakes. So when he heard on April 25 that a magnitude 7.8 earthquake had struck near Gorkha, Nepal, not far from Kathmandu, he thought he knew what to expect—utter devastation throughout Kathmandu and a death toll in the hundreds of thousands.

"At first when I saw the news trickling in from Kathmandu, I thought there was a problem of communication, that we weren't hearing the full extent of the damage," says Avouac, Caltech's Earle C. Anthony Professor of Geology. "As it turns out, there was little damage to the regular dwellings, and thankfully, as a result, there were far fewer deaths than I originally anticipated."

Using data from the GPS stations, an accelerometer that measures ground motion in Kathmandu, data from seismological stations around the world, and radar images collected by orbiting satellites, an international team of scientists led by Caltech has pieced together the first complete account of what physically happened during the Gorkha earthquake—a picture that explains how the large earthquake wound up leaving the majority of low-story buildings unscathed while devastating some treasured taller structures.

The findings are described in two papers that now appear online. The first, in the journal Nature Geoscience, is based on an analysis of seismological records collected more than 1,000 kilometers from the epicenter and places the event in the context of what scientists knew of the seismic setting near Gorkha before the earthquake. The second paper, appearing in Science Express, goes into finer detail about the rupture process during the April 25 earthquake and how it shook the ground in Kathmandu.


Build Up and Release of Strain on Himalaya Megathrust (caption and credit in video attached in upper right)

In the first study, the researchers show that the earthquake occurred on the Main Himalayan Thrust (MHT), the main megathrust fault along which northern India is pushing beneath Eurasia at a rate of about two centimeters per year, driving the Himalayas upward. Based on GPS measurements, scientists know that a large portion of this fault is "locked." Large earthquakes typically release stress on such locked faults—as the lower tectonic plate (here, the Indian plate) pulls the upper plate (here, the Eurasian plate) downward, strain builds in these locked sections until the upper plate breaks free, releasing strain and producing an earthquake. There are areas along the fault in western Nepal that are known to be locked and have not experienced a major earthquake since a big one (larger than magnitude 8.5) in 1505. But the Gorkha earthquake ruptured only a small fraction of the locked zone, so there is still the potential for the locked portion to produce a large earthquake.

"The Gorkha earthquake didn't do the job of transferring deformation all the way to the front of the Himalaya," says Avouac. "So the Himalaya could certainly generate larger earthquakes in the future, but we have no idea when."

The epicenter of the April 25 event was located in the Gorkha District of Nepal, 75 kilometers to the west-northwest of Kathmandu, and propagated eastward at a rate of about 2.8 kilometers per second, causing slip in the north-south direction—a progression that the researchers describe as "unzipping" a section of the locked fault.

"With the geological context in Nepal, this is a place where we expect big earthquakes. We also knew, based on GPS measurements of the way the plates have moved over the last two decades, how 'stuck' this particular fault was, so this earthquake was not a surprise," says Jean Paul Ampuero, assistant professor of seismology at Caltech and coauthor on the Nature Geoscience paper. "But with every earthquake there are always surprises."


Propagation of April 2015 Mw 7.8 Gorkha Earthquake (caption and credit in video attached in upper right)

In this case, one of the surprises was that the quake did not rupture all the way to the surface. Records of past earthquakes on the same fault—including a powerful one (possibly as strong as magnitude 8.4) that shook Kathmandu in 1934—indicate that ruptures have previously reached the surface. But Avouac, Ampuero, and their colleagues used satellite Synthetic Aperture Radar data and a technique called back projection that takes advantage of the dense arrays of seismic stations in the United States, Europe, and Australia to track the progression of the earthquake, and found that it was quite contained at depth. The high-frequency waves that were largely produced in the lower section of the rupture occurred at a depth of about 15 kilometers.

"That was good news for Kathmandu," says Ampuero. "If the earthquake had broken all the way to the surface, it could have been much, much worse."

The researchers note, however, that the Gorkha earthquake did increase the stress on the adjacent portion of the fault that remains locked, closer to Kathmandu. It is unclear whether this additional stress will eventually trigger another earthquake or if that portion of the fault will "creep," a process that allows the two plates to move slowly past one another, dissipating stress. The researchers are building computer models and monitoring post-earthquake deformation of the crust to try to determine which scenario is more likely.

Another surprise from the earthquake, one that explains why many of the homes and other buildings in Kathmandu were spared, is described in the Science Express paper. Avouac and his colleagues found that for such a large-magnitude earthquake, high-frequency shaking in Kathmandu was actually relatively mild. And it is high-frequency waves, with short periods of vibration of less than one second, that tend to affect low-story buildings. The Nature Geoscience paper showed that the high-frequency waves that the quake produced came from the deeper edge of the rupture, on the northern end away from Kathmandu.

The GPS records described in the Science Express paper show that within the zone that experienced the greatest amount of slip during the earthquake—a region south of the sources of high-frequency waves and closer to Kathmandu—the onset of slip on the fault was actually very smooth. It took nearly two seconds for the slip rate to reach its maximum value of one meter per second. In general, the more abrupt the onset of slip during an earthquake, the more energetic the radiated high-frequency seismic waves. So the relatively gradual onset of slip in the Gorkha event explains why this patch, which experienced a large amount of slip, did not generate many high-frequency waves.

"It would be good news if the smooth onset of slip, and hence the limited induced shaking, were a systematic property of the Himalayan megathrust fault, or of megathrust faults in general." says Avouac. "Based on observations from this and other megathrust earthquakes, this is a possibility."

In contrast to what they saw with high-frequency waves, the researchers found that the earthquake produced an unexpectedly large amount of low-frequency waves with longer periods of about five seconds. This longer-period shaking was responsible for the collapse of taller structures in Kathmandu, such as the Dharahara Tower, a 60-meter-high tower that survived larger earthquakes in 1833 and 1934 but collapsed completely during the Gorkha quake.

To understand this, consider plucking the strings of a guitar. Each string resonates at a certain natural frequency, or pitch, depending on the length, composition, and tension of the string. Likewise, buildings and other structures have a natural pitch or frequency of shaking at which they resonate; in general, the taller the building, the longer the period at which it resonates. If a strong earthquake causes the ground to shake with a frequency that matches a building's pitch, the shaking will be amplified within the building, and the structure will likely collapse.

Turning to the GPS records from two of Avouac's stations in the Kathmandu Valley, the researchers found that the effect of the low-frequency waves was amplified by the geological context of the Kathmandu basin. The basin is an ancient lakebed that is now filled with relatively soft sediment. For about 40 seconds after the earthquake, seismic waves from the quake were trapped within the basin and continued to reverberate, ringing like a bell with a frequency of five seconds.

"That's just the right frequency to damage tall buildings like the Dharahara Tower because it's close to their natural period," Avouac explains.

In follow-up work, Domniki Asimaki, professor of mechanical and civil engineering at Caltech, is examining the details of the shaking experienced throughout the basin. On a recent trip to Kathmandu, she documented very little damage to low-story buildings throughout much of the city but identified a pattern of intense shaking experienced at the edges of the basin, on hilltops or in the foothills where sediment meets the mountains. This was largely due to the resonance of seismic waves within the basin.

Asimaki notes that Los Angeles is also built atop sedimentary deposits and is surrounded by hills and mountain ranges that would also be prone to this type of increased shaking intensity during a major earthquake.

"In fact," she says, "the buildings in downtown Los Angeles are much taller than those in Kathmandu and therefore resonate with a much lower frequency. So if the same shaking had happened in L.A., a lot of the really tall buildings would have been challenged."

That points to one of the reasons it is important to understand how the land responded to the Gorkha earthquake, Avouac says. "Such studies of the site effects in Nepal provide an important opportunity to validate the codes and methods we use to predict the kind of shaking and damage that would be expected as a result of earthquakes elsewhere, such as in the Los Angeles Basin."

Additional authors on the Nature Geoscience paper, "Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake," are Lingsen Meng (PhD '12) of UC Los Angeles, Shengji Wei of Nanyang Technological University in Singapore, and Teng Wang of Southern Methodist University. The lead author on the Science paper, "Slip pulse and resonance of Kathmandu basin during the 2015 Mw 7.8 Gorkha earthquake, Nepal imaged with geodesy" is John Galetzka, formerly an associate staff geodesist at Caltech and now a project manager at UNAVCO in Boulder, Colorado. Caltech research geodesist Joachim Genrich is also a coauthor, as are Susan Owen and Angelyn Moore of JPL. For a full list of authors, please see the paper.

The Nepal Geodetic Array was funded by Caltech, the Gordon and Betty Moore Foundation, and the National Science Foundation. Additional funding for the Science study came from the Department of Foreign International Development (UK), the Royal Society (UK), the United Nations Development Programme, and the Nepal Academy for Science and Technology, as well as NASA and the Department of Foreign International Development.

Writer: 
Kimm Fesenmaier
Home Page Title: 
Details of the April 2015 Earthquake in Nepal
Listing Title: 
Details of the April 2015 Earthquake in Nepal
Writer: 
Exclude from News Hub: 
No
Short Title: 
Details of the April 2015 Earthquake in Nepal
News Type: 
Research News

Using Radar Satellites to Study Icelandic Volcanoes and Glaciers

On August 16 of last year, Mark Simons, a professor of geophysics at Caltech, landed in Reykjavik with 15 students and two other faculty members to begin leading a tour of the volcanic, tectonic, and glaciological highlights of Iceland. That same day, a swarm of earthquakes began shaking the island nation—seismicity that was related to one of Iceland's many volcanoes, Bárðarbunga caldera, which lies beneath Vatnajökull ice cap.

As the trip proceeded, it became clear to scientists studying the event that magma beneath the caldera was feeding a dyke, a vertical sheet of magma slicing through the crust in a northeasterly direction. On August 29, as the Caltech group departed Iceland, the dike triggered an eruption in a lava field called Holuhraun, about 40 kilometers (roughly 25 miles) from the caldera just beyond the northern limit of the ice cap.

Although the timing of the volcanic activity necessitated some shuffling of the trip's activities, such as canceling planned overnight visits near what was soon to become the eruption zone, it was also scientifically fortuitous. Simons is one of the leaders of a Caltech/JPL project known as the Advanced Rapid Imaging and Analysis (ARIA) program, which aims to use a growing constellation of international imaging radar satellites that will improve situational awareness, and thus response, following natural disasters. Under the ARIA umbrella, Caltech and JPL/NASA had already formed a collaboration with the Italian Space Agency (ASI) to use its COSMO-SkyMed (CSK) constellation (consisting of four orbiting X-Band radar satellites) following such events.

Through the ASI/ARIA collaboration, the managers of CSK agreed to target the activity at Bárðarbunga for imaging using a technique called interferometric synthetic aperture radar (InSAR). As two CSK satellites flew over, separated by just one day, they bounced signals off the ground to create images of the surface of the glacier above the caldera. By comparing those two images in what is called an interferogram, the scientists could see how the glacier surface had moved during that intervening day. By the evening of August 28, Simons was able to pull up that first interferogram on his cell phone. It showed that the ice above the caldera was subsiding at a rate of 50 centimeters (more than a foot and a half) a day—a clear indication that the magma chamber below Bárðarbunga caldera was deflating.

The next morning, before his return flight to the United States, Simons took the data to researchers at the University of Iceland who were tracking Bárðarbunga's activity.

"At that point, there had been no recognition that the caldera was collapsing. Naturally, they were focused on the dyke and all the earthquakes to the north," says Simons. "Our goal was just to let them know about the activity at the caldera because we were really worried about the possibility of triggering a subglacial melt event that would generate a catastrophic flood."

Luckily, that flood never happened, but the researchers at the University of Iceland did ramp up observations of the caldera with radar altimetry flights and installed a continuous GPS station on the ice overlying the center of the caldera.

Last December, Icelandic researchers published a paper in Nature about the Bárðarbunga event, largely focusing on the dyke and eruption. Now, completing the picture, Simons and his colleagues have developed a model to describe the collapsing caldera and the earthquakes produced by that action. The new findings appear in the journal Geophysical Journal International.

"Over a span of two months, there were more than 50 magnitude-5 earthquakes in this area. But they didn't look like regular faulting—like shearing a crack," says Simons. "Instead, the earthquakes looked like they resulted from movement inward along a vertical axis and horizontally outward in a radial direction—like an aluminum can when it's being crushed."

To try to determine what was actually generating the unusual earthquakes, Bryan Riel, a graduate student in Simons's group and lead author on the paper, used the original one-day interferogram of the Bárðarbunga area along with four others collected by CSK in September and October. Most of those one-day pairs spanned at least one of the earthquakes, but in a couple of cases, they did not. That allowed Riel to isolate the effect of the earthquakes and determine that most of the subsidence of the ice was due to what is called aseismic activity—the kind that does not produce big earthquakes. Thus, Riel was able to show that the earthquakes were not the primary cause of the surface deformation inferred from the satellite radar data.

"What we know for sure is that the magma chamber was deflating as the magma was feeding the dyke going northward," says Riel. "We have come up with two different models to explain what was actually generating the earthquakes."

In the first scenario, because the magma chamber deflated, pressure from the overlying rock and ice caused the caldera to collapse, producing the unusual earthquakes. This mechanism has been observed in cases of collapsing mines (e.g., the Crandall Canyon Mine in Utah).

The second model hypothesizes that there is a ring fault arcing around a significant portion of the caldera. As the magma chamber deflated, the large block of rock above it dropped but periodically got stuck on portions of the ring fault. As the block became unstuck, it caused rapid slip on the curved fault, producing the unusual earthquakes.

"Because we had access to these satellite images as well as GPS data, we have been able to produce two potential interpretations for the collapse of a caldera—a rare event that occurs maybe once every 50 to 100 years," says Simons. "To be able to see this documented as it's happening is truly phenomenal."

Additional authors on the paper, "The collapse of Bárðarbunga caldera, Iceland," are Hiroo Kanamori, John E. and Hazel S. Smits Professor of Geophysics, Emeritus, at Caltech; Pietro Milillo of the University of Basilicata in Potenza, Italy; Paul Lundgren of JPL; and Sergey Samsonov of the Canada Centre for Mapping and Earth Observation. The work was supported by a NASA Earth and Space Science Fellowship and by the Caltech/JPL President's and Director's Fund.

Writer: 
Kimm Fesenmaier
Home Page Title: 
Using Radar Satellites to Study Volcanoes
Listing Title: 
Using Radar Satellites to Study Volcanoes
Writer: 
Exclude from News Hub: 
No
Short Title: 
Using Radar Satellites to Study Volcanoes
News Type: 
Research News
Monday, May 18, 2015
Brown Gymnasium – Scott Brown Gymnasium

Jupiter’s Grand Attack

Tuesday, May 19, 2015
Guggenheim 101 (Lees-Kubota Lecture Hall) – Guggenheim Aeronautical Laboratory

Science in a Small World - Short Talks

Pages