Caltech Students Arrive at Solar Decathlon 2013

DALE is nearly ready to face the judges. The Dynamic Augmented Living Environment, Caltech's collaboration with the Southern California Institute of Architecture (SCI-Arc) is now on-site at the Department of Energy's 2013 Solar Decathlon competition site in Irvine, California.

The SCI-Arc/Caltech team has been planning DALE, its unique and completely solar-powered home, since its competition proposal was accepted in January 2012, along with proposals from 19 other American and international teams. Nearly 40 Caltech students participated in the design process, most of which took place in an engineering project course called Introduction to Multidisciplinary Systems Engineering, and offered during the 2012-2013 academic year. Of the students in this course, taught by Melany Hunt, Dotty and Dick Hayman Professor of Mechanical Engineering and a vice provost, seven stayed on, spending their summer actually building the sustainable house.

Once the majority of construction was complete in late September, the SCI-Arc/Caltech team had to pack up DALE and physically move the entire house from its construction site on the SCI-Arc campus in downtown Los Angeles more than 40 miles south to Orange County Great Park in Irvine, where this year's competition will be held starting on October 3.

While some of DALE's competitors had to employ the use of large cranes to transport their entries or coordinate weeks-long international transportation to the competition site, project manager Andrew Gong (BS '12) says that DALE only spent about three-and-a-half hours in transit. "We picked up DALE with a heavy-duty forklift and placed it on long trucks," Gong says. "And there wasn't any damage other than expected small scrapes to the bottom from the forks."

DALE's design consists of two configurable, box-like modules—one kitchen and bathroom module, and one living and sleeping space module—that can move together or apart. When in the open configuration, DALE's design exploits the ambient outdoor temperature to heat or cool the house, helping to maintain a comfortable temperature within the house without using extra energy for heating and air-conditioning. This moving house was designed with sustainability in mind, but the modules also made it easier for team DALE to truck its house down the interstate to Irvine. "Since the house is composed of modules, it was actually fairly simple to pack up and ship. The main issue was just making sure everything got packed on time," Gong says.

The SCI-Arc/Caltech collaboration is one of 20 teams in the Department of Energy competition, each challenged to design and build affordable, attractive, energy-efficient houses that have the comforts of modern living but are powered only by the sun. As the name "Solar Decathlon" implies, teams will compete for the best total number of points in 10 contests. A panel of experts will use the contests to judge and score the entries based on features ranging from architecture and market appeal to affordability and each house's ability to host a movie night—called the Home Entertainment Contest.

The SCI-Arc/Caltech team wants DALE to score well in the overall competition, but the Caltech team members hope they score especially well in one particular aspect: the Engineering Contest. In this contest, a jury made up of professional engineers will judge each house based on the home's functionality, efficiency, innovation, reliability, and project documentation. "In 2011, with CHIP—our first Solar Decathlon entry—we came in second place. With DALE, we took that second place as a challenge," says Gong, "because now we have to get first, obviously!"

To optimize DALE's energy efficiency, the Caltech members of the team spent months calculating and modeling the home's likely energy usage during the competition. Thirty years of Orange County weather data were used to predict heating and air-conditioning needs for the October competition. "The contests are held on different days of the competition, and we based the energy budget on the contests we will have on a given day: the cooking contest, movie night, heating and air-conditioning test, etc.," Gong says. "With our competition energy budget, we then modeled out the performance required from the solar panels to meet that energy demand," Gong says.

According to their calculations, DALE's oversized solar panels will allow the house to be net-zero during the decathlon—meaning it will produce as much energy as it consumes. And in the future, if the house was used in the longer daylight hours of summer, DALE could produce far more energy than it uses, Gong adds.

The SCI-Arc/Caltech team also designed an energy-saving mobile app for DALE that would allow its owner to monitor the home's real-time energy supply and consumption and take steps to use less energy. "As a team, we are aiming to create a house that is not only energy efficient by itself, but also encourages the inhabitants to live a greener lifestyle," Caltech electrical engineering student Do Hee Kim says on the DALE website. "We have made it simple for homeowners to execute these actions by having the ability to remotely turn on and off home appliances," Kim says.

Visitors will be able to interact with DALE and explore its innovative features during public viewings scheduled for October 3–6 and 10–13 from 11 a.m. to 7 p.m. In addition, visitors arriving at 2:30 will get to see the home reconfigured in real time, a feature that sets DALE apart from the other Solar Decathlon entries. The winners will be announced on October 12, and just a few days later, the team will pack up for the move back to Los Angeles. After the competition, DALE will be displayed at the SCI-Arc campus.

And for any house hunters visiting the competition, the SCI-Arc/Caltech team has good news: DALE is for sale and can be delivered to a new owner. Although the Department of Energy provides a limited amount of seed money for Solar Decathlon teams, fundraising is necessary to cover the actual costs of production; funds from the sale of the home will go to recoup some this year's competition costs and could also help support an entry bid for the 2015 Solar Decathlon.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Meet DALE: Solar Decathlon 2013 Construction is Under Way

Trading in their textbooks for power tools this summer, a group of nine Caltech students and recent graduates have had a unique opportunity to apply their classroom knowledge to real-world challenges. Along with students in architectural design from the Southern California Institute of Architecture (SCI-Arc), the Caltech students have spent their summer building the Dynamic Augmented Living Environment (DALE), a joint SCI-Arc/Caltech entry in the 2013 Solar Decathlon competition. DALE marks Caltech's second collaboration with SCI-Arc, following their Compact Hyper-Insulated Prototype (CHIP), the partnership's first Solar Decathlon entry, in 2011.

Sponsored by the Department of Energy, the biennial Solar Decathlon competition challenges collegiate teams to "design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive." Contest rules state that each entry must be a net-zero home, meaning that its solar panels must produce at least as much energy as the home uses.

Construction on the SCI-Arc/Caltech collaboration began in March, when DALE's cement foundation was poured. In April, the home's steel frames were dropped in, allowing the students (guided by a few construction professionals) to begin nailing the lumber into place.

As of August, the home is starting to take shape; the bathroom has been framed out, the kitchen cabinets are set for installation, and soon the house will be sporting a vinyl exterior and a set of moving canopies that will hold its solar panels.

Although construction work only began a few months ago, the Caltech students began planning for DALE last fall in an engineering project course called Introduction to Multidisciplinary Systems Engineering, taught by Melany Hunt, Dotty and Dick Hayman Professor of Mechanical Engineering and a vice provost.

"I really like this project because it's very hands-on," says DALE team member Zeke Millikan (BS '13, mechanical engineering). "A lot of classes at Caltech are very theoretical, and I'm more of a hands-on type of person. It's really satisfying to actually build something and see it come together."

"Prior to this summer," says DALE team member Sheila Lo ('16), "I didn't really have a lot of experience in construction, so I spent a lot of time learning the terminology and how to use which tools in certain situations. As one of the youngest members of the team, it's been a great privilege to work with upperclassmen and recent graduates because they've taught me a lot about dedication to a project and what it means to apply the skills you learn at Caltech."

And this dedication will be important in the coming weeks, as there is still plenty of work to be done for the early-October competition. Unlike the five previous Solar Decathlons, which were held in Washington, D.C., this year's event will take place in nearby Irvine, California. "Having the competition just right down the road from us inspired the design," says DALE team member Ella Seal (BS '13, mechanical engineering).

To capitalize on Southern California's mild climate, DALE is made up of two moving modules that can glide apart on warm sunny days, creating an open indoor courtyard that can triple the home's available living space. During inclement weather—and for enhanced safety and privacy—DALE's modules can also move together, creating an enclosed home of about 600 square feet.

The home's untraditional moving design—conceived by SCI-Arc team members—is more than just eye-catching. "It also will actually save energy and money over the course of the year," says Seal. By varying the configurations of DALE's modules and shade canopies—the same ones that will hold DALE's solar panels—the Caltech students were able to optimize energy efficiency during different times of the day without sacrificing comfort. "During the summer, the air-conditioning energy consumption drops by at least half when you are able to open up the house and adjust the shading depending on the weather outside," says Millikan.

But a moving house also presents several engineering challenges, says Seal. Wires for electricity and pipes for plumbing had to be specially designed for their moving platform. Seal and Millikan were also tasked with creating a foolproof safety mechanism for DALE's movement systems. Applying their backgrounds in mechanical engineering, they created a system of laser beams, light curtains, and pressure sensors that acts "basically like a garage door sensor on steroids," says Millikan. "We think we've addressed pretty much every scenario where someone could get seriously hurt."

In addition to the movement systems, students from Caltech are responsible for designing the home's heating, ventilation, and air-conditioning system; hot water system; photovoltaic arrays; and other engineering aspects of the solar-powered home. As well as their technical contributions, the Caltech students will collaborate with their SCI-Arc teammates on publicity and fund-raising efforts and the compilation of a final written report.

"I appreciate the fact that it's not just engineering," says Seal. "I really like the fact that we have to write an engineering narrative, describing all of the really cool innovations that we've built into the house. It's not necessarily something that I would get to do if I took a different project class at Caltech."

This type of multidisciplinary and collaborative experience is important for Caltech students, notes Hunt. "Engineering students need experiences in which they design, create, build, and test," she says. "They also should have opportunities in which they work as part of a team. Most engineering projects require multiple perspectives with input coming from a range of individuals with different expertise and vision."

In addition to Millikan, Seal, and Lo, the DALE team includes current Caltech students Brynan Qui ('15), Do Hee Kim ('15), Sharon Wang ('16), as well as recent graduates Tony Wu (BS '13, mechanical engineering and business economics and management) and Christine Viveiros (BS '13, mechanical engineering), and project manager Andrew Gong (BS '12, chemical engineering [materials]). The SCI-Arc/Caltech project, along with other entries for this year's Solar Decathlon competition, will be open to the public October 3–6 and 10–13 at the Orange County Great Park in Irvine, California.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Caltech's Unique Wind Projects Move Forward

Caltech fluid-mechanics expert John Dabiri has some big plans for a high school in San Pedro, military bases in California, and a small village on Bristol Bay, Alaska—not to mention for the future of wind power generation, in general.

Back in 2009, Dabiri, a professor of aeronautics and bioengineering, was intrigued by the pattern of spinning vortices that trail fish as they swim. Curious, he assigned some graduate students to find out what would happen to a wind farm's power output if its turbines were spaced like those fishy vortices. In simulations, energy production jumped by a factor of 10. To prove that the same effect would occur under real-world conditions, Dabiri and his students established a field site in the California desert with 24 turbines. Data gathered from the site proved that placing turbines in a particular orientation in relation to one another profoundly improves their energy-generating efficiency.

The turbines Dabiri has been investigating aren't the giant pinwheels with blades like propellers—known as horizontal-axis wind turbines (HAWTs)—that most people envision when they think about wind power. Instead, Dabiri's group uses much shorter turbines that look something like egg beaters sticking out of the ground. Dabiri and his colleagues believe that with further development, these so-called vertical-axis wind turbines (VAWTs) could dramatically decrease the cost, footprint, and environmental impact of wind farms.

"We have been able to demonstrate that using wind turbines that are 30 feet tall, as opposed to 300 feet tall, could generate sufficient power for wind-farm applications," Dabiri says. "That's important for us because our approach to getting to lower-cost energy is through the use of smaller vertical-axis wind turbines that are simpler—for example, they have no gearbox and don't need to be pointed in the direction of the oncoming wind—and whose performance can be optimized by arranging them properly."

Even as Dabiri and his group continue to study the physics of the wind as it moves through their wind farm and to develop computer models that will help them to predict optimal configurations for turbines in different areas, they are now beginning several pilot projects to test their concept.

"One of the areas where these smaller turbines can have an immediate impact is in the military," says Dabiri. Indeed, the Department of Defense is one of the largest energy consumers in the country and is interested in using renewable methods to meet some of that need. However, one challenge with the use of wind energy is that large HAWTs can interfere with helicopter operations and radar signatures. Therefore, the Office of Naval Research is funding a three-year project by Dabiri's group to test the smaller VAWTs and to further develop software tools to determine the optimal placement of turbines. "We believe that these smaller turbines provide the opportunity to generate renewable power while being complementary to the ongoing activities at the base," Dabiri says.

A second pilot project, funded by the Los Angeles Unified School District, will create a small wind farm that will help to power a new school while teaching its students about wind power. San Pedro High School's John M. and Muriel Olguin Campus, which opened in August 2012, was designed to be one of the greenest schools ever built, with solar panels, artificial turf, and a solar-heated pool—and the plan has long included the use of wind turbines.

"Here, the challenge is that you have a community nearby, and so if you used the very large horizontal-axis wind turbines, you would have the potential issue of the visual signature, the noise, and so on," Dabiri says. "These smaller turbines will be a demonstration of an alternative that's still able to generate wind energy but in a way that might be more agreeable to these communities."

That is one of the major benefits of VAWTs: being smaller, they fit into a landscape far more seamlessly than would 100-meter-tall horizontal-axis wind turbines. Because VAWTs can also be placed much closer to one another, many more of them can fit within a given area, allowing them to tap into more of the wind energy available in that space than is typically possible. What this all means is that a very productive wind farm can be built that has a lower environmental impact than previously possible.

That is especially appealing in roadless areas such as Alaska's Bristol Bay, located at the eastern edge of the Bering Sea. The villages around the bay—a crucial ecosystem for sockeye salmon—face particular challenges when it comes to meeting their energy needs. The high cost of transporting diesel fuel to the region to generate power creates a significant barrier to sustainable economic development. However, the region also has strong wind resources, and that's where Dabiri comes in.

With funding from the Gordon and Betty Moore Foundation, Dabiri and his group, in collaboration with researchers at the University of Alaska Fairbanks, will be starting a three-year project this summer to asses the performance of a VAWT wind farm in a village called Igiugig. The team will start by testing a few different VAWT designs. Among them is a new polymer rotor, designed by Caltech spinoffs Materia and Scalable Wind Solutions, which may withstand icing better than standard aluminum rotors.

"Once we've figured out which components from which vendors are most effective in that environment, the idea is to expand the project next year, to have maybe a dozen turbines at the site," Dabiri says. "To power the entire village, we'd be talking somewhere in the 50- to 70-turbine range, and all of those could be on an acre or two of land. That's one of the benefits—we're trying to generate the power without changing the landscape. It's pristine, beautiful land. You wouldn't want to completely change the landscape for the sake of producing energy."

Video and images of Dabiri's field site in the California desert can be found at http://dabiri.caltech.edu/research/wind-energy.html.

 

The Gordon and Betty Moore Foundation, established in 2000, seeks to advance environmental conservation and scientific research around the world and improve the quality of life in the San Francisco Bay Area. The Foundation's Science Program aims to make a significant impact on the development of provocative, transformative scientific research, and increase knowledge in emerging fields.

Writer: 
Kimm Fesenmaier
Contact: 
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News

Frances Arnold Wins Eni Award for Renewable-Energy Work

PASADENA, Calif.—For the second year in a row, a faculty member from the California Institute of Technology (Caltech) has been awarded the Eni Award in Renewable and Non-Conventional Energy. This year, chemical engineer Frances Arnold—who pioneered methods of "directed evolution" for the production and optimization of biological catalysts—has been chosen to receive the distinction, along with her colleague James Liao of UCLA.

Arnold, Caltech's Dick and Barbara Dickinson Professor of Chemical Engineering, Bioengineering and Biochemistry, has shown that mimicking Darwinian evolution in the laboratory is an efficient way to engineer the amino-acid sequence of a protein, endowing it with new capabilities or improving its performance. Arnold and her colleagues have used directed evolution to improve catalysts for making fuels and chemicals from renewable resources.

"There are a lot of creative people working on renewable and non-conventional energy, so it is a huge honor to be selected for this distinction," Arnold says. "This prize recognizes the basic technology we've developed over the years, but especially the application of directed evolution to making things that we currently get from non-renewable hydrocarbons."

The Eni Awards are international prizes that recognize outstanding research and development in the fields of energy and the environment. Eni is an integrated energy company based in Italy. According to the company's website, "The Eni Award was created to develop better use of renewable energy, promote environmental research and encourage new generations of researchers."

A 24-person scientific award committee selects the honorees each year in four categories: New Frontiers of Hydrocarbons, Renewable and Non-Conventional Energy, Protection of the Environment, and Debut in Research. Three additional prizes are awarded for innovative and applied research within Eni, in energy and the environment.

In 2012, Harry A. Atwater, Caltech's Howard Hughes Professor and professor of applied physics and materials science, and director of the Resnick Sustainability Institute, along with his colleague Albert Polman of the Dutch Research Institute AMOLF, was awarded the same Eni Award in Renewable and Non-Conventional Energy, for developing new ultrathin, high-efficiency solar cells.

Of Caltech's back-to-back Eni Awards, Arnold says, "It shows that the renewable-energy research going on at Caltech is world-class. Other places may have much bigger programs, but for impact and accomplishment, the research that the Resnick Institute supports is recognized throughout the world as being at the very top. These groups are making real progress on some of the most important problems we face today."

Arnold, Liao, and the other 2013 awardees will receive their prizes on June 27 at the Presidential Palace in Rome.

Writer: 
Kimm Fesenmaier
Writer: 
Exclude from News Hub: 
Yes

Fifty Years of Clearing the Skies

A Milestone in Environmental Science

Ringed by mountains and capped by a temperature inversion that traps bad air, Los Angeles has had bouts of smog since the turn of the 20th century. An outbreak in 1903 rendered the skies so dark that many people mistook it for a solar eclipse. Angelenos might now be living in a state of perpetual midnight—assuming we could live here at all—were it not for the work of Caltech Professor of Bio-organic Chemistry Arie Jan Haagen-Smit. How he did it is told here largely in his own words, excerpted from Caltech's Engineering & Science magazine between 1950 and 1962. (See "Related Links" for the original articles.)

Old timers, which in California means people who have lived here some 25 years, will remember the invigorating atmosphere of Los Angeles, the wonderful view of the mountains, and the towns surrounded by orange groves. Although there were some badly polluted industrial areas, it was possible to ignore them and live in more pleasant locations, especially the valleys . . . Just 20 years ago, the community was disagreeably surprised when the atmosphere was filled with a foreign substance that produced a strong irritation of the eyes. Fortunately, this was a passing interlude which ended with the closing up of a wartime synthetic rubber plant. (November 1962)

Alas, the "interlude" was an illusion. In the years following World War II, visibility often fell to a few blocks. The watery-eyed citizenry established the Los Angeles County Air Pollution Control District (LACAPCD) in 1947, the first such body in the nation. The obvious culprits—smoke-belching power plants, oil refineries, steel mills, and the like—were quickly regulated, yet the problem persisted. Worse, this smog was fundamentally different from air pollution elsewhere—the yellow, sulfur-dioxide-laced smog that killed 20 people in the Pennsylvania steel town of Donora in 1948, for example, or London's infamous pitch-black "pea-soupers," where the burning of low-grade, sulfur-rich coal added soot to the SO2. (The Great Smog of 1952 would carry off some 4,000 souls in four days.) By contrast, L.A.'s smog was brown and had an acrid odor all its own.

Haagen-Smit had honed his detective skills isolating and identifying the trace compounds responsible for the flavors of pineapples and fine wines, and in 1948 he began to turn his attention to smog.

Chemically, the most characteristic aspect of smog is its strong oxidizing action . . . The amount of oxidant can readily be determined through a quantitative measurement of iodine liberated from potassium iodide solution, or of the red color formed in the oxidation of phenolphthalin to the well-known acid-base indicator, phenolphthalein. To demonstrate these effects, it is only necessary to bubble a few liters of smog air through the colorless solutions. (December 1954)

His chief suspect was ozone, a highly reactive form of oxygen widely used as a bleach and a disinfectant. It's easy to make—a spark will suffice—and it's responsible for that crisp "blue" odor produced by an overloaded electric motor. But there was a problem:

During severe smog attacks, ozone concentrations of 0.5 ppm [parts per million], twenty times higher than in [clean] country air, have been measured. From such analyses the quantity of ozone present in the [Los Angeles] basin at that time is calculated to be about 500 tons.

Since ozone is subject to a continuous destruction in competition with its formation, we can estimate that several thousand tons of ozone are formed during a smog day. It is obvious that industrial sources or occasional electrical discharges do not release such tremendous quantities of ozone. (December 1954)

If ozone really was to blame, where was it coming from? An extraordinary challenge lay ahead:

The analysis of air contaminants has some special features, due to the minute amounts present in a large volume of air. The state in which these pollutants are present—as gases, liquids and solid particles of greatly different sizes—presents additional difficulties. The small particles of less than one micron diameter do not settle out, but are in a stable suspension and form so-called aerosols.

The analytical chemist has devoted a great deal of effort to devising methods for the collection of this heterogeneous material. Most of these methods are based on the principle that the particles are given enough speed to collide with each other or with collecting surfaces . . . A sample of Los Angeles' air shows numerous oily droplets of a size smaller than 0.5 micron, as well as crystalline deposits of metals and salts . . . When air is passed through a filter paper, the paper takes on a grey appearance, and extraction with organic solvents gives an oily material. (December 1950)

Haagen-Smit suspected that this oily material, a complex brew of organic acids and other partially oxidized hydrocarbons, was smog's secret ingredient. In 1950, he took a one-year leave of absence from Caltech to prove it, working full-time in a specially equipped lab set up for him by the LACAPCD. By the end of the year, he had done so.

Through investigations initiated at Caltech, we know that the main source of this smog is due to the release of two types of material. One is organic material—mostly hydrocarbons from gasoline—and the other is a mixture of oxides of nitrogen. Each one of these emissions by itself would be hardly noticed. However, in the presence of sunlight, a reaction occurs, resulting in products which give rise to the typical smog symptoms. The photochemical oxidation is initiated by the dissociation of NO2 into NO and atomic oxygen. This reactive oxygen attacks organic material, resulting in the formation of ozone and various oxidation products . . . The oxidation reactions are generally accompanied by haze or aerosol formation, and this combination aggravates the nuisance effects of the individual components of the smog complex. (November 1962)

Professor of Plant Physiology Frits Went was also on the case. Went ran Caltech's Earhart Plant Research Laboratory, which he proudly called the "phytotron," by analogy to the various "trons" operated by particle physicists. (Phyton is the Greek word for plant.) "Caltech's plant physiologists happen to believe that the phytotron is as marvellously complicated as any of the highly-touted 'atom-smashing' machines," Went wrote in E&S in 1949. "[It] is the first laboratory in the world in which plants can be grown under every possible climatic condition. Light, temperature, humidity, gas content of the air, wind, rain, and fog—all these factors can be simultaneously and independently controlled. The laboratory can create Sacramento Valley climate in one room and New England climate in another." Most of Los Angeles was still orchards and fields instead of tract houses, and the smog was hurting the produce. Went, the LACAPCD, and the UC Riverside agricultural station tested five particularly sensitive crops in the phytotron, Haagen-Smit wrote.

The smog indicator plants include spinach, sugar beet, endive, alfalfa and oats. The symptoms on the first three species are mainly silvering or bronzing of the underside of the leaf, whereas alfalfa and oats show bleaching effects. Some fifty compounds possibly present in the air were tested on their ability to cause smog damage—without success. However, when the reaction products of ozone with unsaturated hydrocarbons were tried, typical smog damage resulted. (December 1950)

And yet a third set of experiments was under way. Rubber tires were rotting from the smog at an alarming rate, cracking as they flexed while rolling along the road. Charles E. Bradley, a research associate in biology, turned this distressing development into a cheap and effective analytical tool by cutting rubber bands by the boxful into short segments. The segments—folded double, secured with a twist of wire, and set outside—would start to fall apart almost before one could close the window. "During severe smog initial cracking appears in about four minutes, as compared to an hour or more required on smog-free days, or at night," Haagen-Smit wrote in the December 1954 E&S.

The conclusion that airborne gasoline and nitrogen oxides (another chief constituent of automobile exhaust) were to blame for smog was not well received by the oil refineries, who hired their own expert to prove him wrong. Abe Zarem (MS '40, PhD '44), the manager and chairman of physics research for the Stanford Research Institute, opined that stratospheric ozone seeping down through the inversion layer was to blame. But seeing (or smelling) is believing, so Haagen-Smit fought back by giving public lectures in which he would whip up flasks full of artificial smog before the audience's eyes, which would soon be watering—especially if they were seated in the first few rows. By the end of his talk, the smog would fill the hall, and he became known throughout the Southland as Arie Haagen-Smog.

By 1954, he and Frits Went had carried the day.

[Plant] fumigations with the photochemical oxidation products of gasoline and nitrogen dioxide (NO2) was the basis of one of the most convincing arguments for the control of hydrocarbons by the oil industry. (December 1954)

It probably didn't hurt that an outbreak that October closed schools and shuttered factories for most of the month, and that angry voters were wearing gas masks to protest meetings. By then, there were some two million cars on the road in the metropolitan area, spewing a thousand tons of hydrocarbons daily.

Incomplete combustion of gasoline allows unburned and partially burned fuel to escape from the tailpipe. Seepage of gasoline, even in new cars, past piston rings into the crankcase, is responsible for 'blowby' or crankcase vent losses. Evaporation from carburetor and fuel tank are substantial contributions, especially on hot days. (November 1962)

Haagen-Smit was a founding member of California's Motor Vehicle Pollution Control Board, established in 1960. One of the board's first projects was testing positive crankcase ventilation (PCV) systems, which sucked the blown-by hydrocarbons out of the crankcase and recirculated them through the engine to be burned on the second pass. PCV systems were mandated on all new cars sold in California as of 1963. The blowby problem was thus easily solved—but, as Haagen-Smit noted in that same article, it was only the second-largest source, representing about 30 percent of the escaping hydrocarbons.

The preferred method of control of the tailpipe hydrocarbon emission is a better combustion in the engine itself. (The automobile industry has predicted the appearance of more efficiently burning engines in 1965. It is not known how efficient these will be, nor has it been revealed whether there will be an increase or decrease of oxides of nitrogen.) Other approaches to the control of the tailpipe gases involve completing the combustion in muffler-type afterburners. One type relies on the ignition of gases with a sparkplug or pilot-burner; the second type passes the gases through a catalyst bed which burns the gases at a lower temperature than is possible with the direct-flame burners. (November 1962)

Installing an afterburner in the muffler has some drawbacks, not the least of which is that the notion of tooling around town with an open flame under the floorboards might give some people the willies. Instead, catalytic converters became required equipment on California cars in 1975.

In 1968, the Motor Vehicle Pollution Control Board became the California Air Resources Board, with Haagen-Smit as its chair. He was a member of the 1969 President's Task Force on Air Pollution, and the standards he helped those two bodies develop would eventually be adopted by the Environmental Protection Agency, established in 1970—the year that also saw the first celebration of Earth Day. It was also the year when ozone levels in the Los Angeles basin peaked at 0.58 parts per million, nearly five times in excess of the 0.12 parts per million that the EPA would declare to be safe for human health. This reading even exceeded the 0.5 ppm that Haagen-Smit had measured back in 1954, but it was a triumph nonetheless—the number of cars in L.A. had doubled, yet the smog was little worse than it had always been. That was the year we turned the corner, in fact, and our ozone levels have been dropping ever since—despite the continued influx of cars and people to the region.

Haagen-Smit retired from Caltech in 1971 as the skies began to clear, but continued to lead the fight for clean air until his death in 1977—of lung cancer, ironically, after a lifetime of cigarettes. Today, his intellectual heirs, including professors Richard Flagan, Mitchio Okumura, John Seinfeld, and Paul Wennberg, use analytical instruments descended from ones Haagen-Smit would have recognized and computer models sophisticated beyond his wildest dreams to carry the torch—a clean-burning one, of course—forward.

Writer: 
Douglas Smith
Writer: 
Exclude from News Hub: 
No

Theodor Agapie Named Cottrell Scholar

Research Corporation for Science Advancement (RCSA) has named Theodor Agapie, an assistant professor of chemistry at Caltech, a 2013 Cottrell Scholar.

The Cottrell Scholar Awards were instituted by RCSA in 1994 to recognize early-career individuals for innovative research and teaching excellence. The awards are named in honor of scientist, inventor, and philanthropist Frederick Gardner Cottrell who, in 1912, founded the organization that came to be known as RCSA.

"I am honored to have been selected as a Cottrell Scholar by RCSA," says Agapie. "I am grateful to my team of researchers and the greater Caltech community for a rewarding and stimulating environment in which to do science."

Using the natural world as a source of inspiration, Agapie's research group studies and develops molecular systems to solve problems related to energy, materials, and health. In addition to his lab-based research, Agapie actively works to bring together graduate, undergraduate, and high school students through an outreach program that includes career mentoring, designing new experiments, and organized visits to the Caltech campus.

Agapie, a native of Romania, received his bachelor's degree from MIT in 2001 and his PhD from Caltech in 2007. He has been an assistant professor at Caltech since early 2009. Since joining Caltech's faculty, Agapie has been named a Searle Scholar, a Sloan Research Fellow, and a recipient of a National Science Foundation CAREER Award, and he has received the Award in Pure Chemistry from the American Chemical Society.

 

 

 

 

Writer: 
Brian Bell
Frontpage Title: 
Agapie Named Cottrell Scholar
Listing Title: 
Agapie Named Cottrell Scholar
Contact: 
Writer: 
Exclude from News Hub: 
Yes

Jorgensen Laboratory Awarded LEED Platinum Certification

The recent renovations of the Jorgensen Laboratory included many upgrades that were designed to reflect Caltech's commitment to sustainability. Now the building has achieved LEED Platinum certification, the highest honor of the U.S. Green Building Council.

"Achieving Platinum certification on this building was particularly rewarding given the fact that the building will serve as a studio for sustainable energy research," says John Onderdonk, director of sustainability programs at Caltech.

LEED—Leadership in Energy and Environmental Design—is a voluntary program that provides verification of green building design through a survey of prerequisites and guideline credits. To obtain LEED certification, a building must earn a minimum of 40 points on a 110-point LEED rating system scale. Jorgensen received 87 points—80 is the minimum needed for Platinum certification—for its conservation features, which include a "green" roof, natural ventilation systems, use of on-campus solar photovoltaic power, and low-flow water fixtures, among other environmentally conscious details.

Jorgensen is one of 20 LEED Platinum-certified higher-education lab buildings in the country, and one of seven in the state. It is the second higher-education lab building in the state to receive LEED Platinum certification under the current rating system. Caltech's renovation of the Linde + Robinson Lab also received LEED Platinum status last year.

The Jorgensen Lab officially opened in October 2012 and houses scientists who are focused on clean-energy research

Writer: 
Katie Neith
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Calculated Science

A new supercomputer helps Caltech researchers tackle more complicated problems

One of the most powerful computer clusters available to a single department in the academic world just got stronger.

The California Institute of Technology's CITerra supercomputer, a high-performance computing cluster of the type popularly known as a Beowulf cluster, was replaced this year with a faster and more efficient system. The new cluster capitalizes on improvements in fiber-optic cables and video chips—the kind found in many gaming devices and mobile phones—to increase processing capacity and calculation speeds. With access to this improved supercomputer, Caltech's researchers are able to use advanced algorithms to analyze and simulate everything from earthquakes to global climate and weather to the atmospheres of other planets.

The new $2 million supercomputer, which is administered by the Division of Geological and Planetary Sciences, performs with five times the computational power of the previous cluster while using roughly half the energy.  It has 150 teraflops of computing capacity, meaning it can perform 150 trillion calculations per second. The upgrade was made possible in part with the private support of many individuals, including members of GPS's chair's council, a volunteer leadership board.

So what does a faster, more energy-efficient supercomputer mean for Caltech's geoscientists and geophysicists?

"There is a whole new class of problems that we can now address," says Professor of Geophysics Mark Simons, who oversees the cluster. "We can not only solve a given problem faster, but because it takes less time to solve those problems, we can choose to work on harder problems."

Simons, for instance, is working to develop models to understand what happens underground after an earthquake—and what is likely to occur in the months and years after—by analyzing ground motion observed on the surface. In 2011, for instance, a Caltech research team led by Simons used data from GPS satellites and broadband seismographic networks to develop a comprehensive mechanical model for how the ground moved after Japan's 9.0 earthquake.

"Mark's team developed the framework allowing them to do millions of computations where seismologists had only been able to do hundreds before," says Michael Gurnis, the John E. and Hazel S. Smits Professor of Geophysics and director of the Seismological Laboratory. "The ability to routinely compute at a level that is so much higher than anyone else had previously done—to have the computational resources immediately available during the hectic days after a devastating earthquake—was an amazing advance for geophysics."

Simons is not alone in using advanced computation to unlock Earth's greatest mysteries. He and Gurnis—who studies the forces driving Earth's tectonic plates—are among a group of 15 GPS faculty members who, with their students, routinely use the cluster. The division is unique among universities in that it provides its faculty with access to such a large computational facility, giving almost any of its researchers the ability to number crunch when they need to—and for extended periods of time.

Research done using computations from the previous cluster led to more than 140 published papers, which crossed the fields of atmospheric science, planetary science, Earth science, seismology, and earthquake engineering.

One of the biggest users of the new cluster is Andrew Thompson, an assistant professor of environmental science and engineering, who uses it to simulate complex ocean currents and ocean eddies. Capturing the dynamics of these small ocean storms requires large simulations that need to run for weeks.

Thanks to the size of Caltech's cluster, Thompson has been able to simulate large regions of the ocean, in particular the ocean currents around Antarctica, at high resolution. These models have led to a better understanding of how changes in off-shore currents, related to changing climate conditions, affect ocean-heat transport toward and under the ice shelves. Ocean-driven warming is believed to be critical in the melting of the West Antarctic Ice Sheet.

"Oceanography without modeling and simulations would be really challenging science," says Thompson, who arrived at Caltech in the fall of last year. "These models indicate where we need improved or more frequent observations and help us to understand how the ice sheets might respond to future ocean circulation variability. It is remarkable to have these resources at Caltech. Access to the Caltech cluster eliminates some of the need to apply for time on federal computing facilities, and has allowed my research group to hit the ground running."

Writer: 
Exclude from News Hub: 
No
News Type: 
Research News

Bottling Liquid Gold

Caltech Olive Harvest Festival to be held Friday

If you happen to see groups of people perched in the trees along Caltech's famed Olive Walk and Beckman Mall on Friday, whacking at the branches with rakes and PVC pipes—rest assured there's nothing unusual going on. They are participants in this year's Olive Harvest Festival, just trying to gather as many pounds of olives as possible in a day's time.

Friday's event, the fourth festival of its kind, kicks off at 8:30 a.m. and runs until 2:30 p.m., bringing together students, faculty, staff, and Caltech community members. The day's activities include the olive harvest—where undergraduate- and graduate-student teams compete to pick the most olives—as well as olive-oil tasting and olive-products sampling, a Mediterranean-themed lunch available for purchase, and student games (olive-related, of course, such as a tug-of-war with an olive-oil-coated rope).

"It's a good way to share a lot of community without spending a lot of money," says Tom Mannion, Caltech's senior director of student activities and programs.

The festival will wrap up with a raffle drawing and prize giveaway and the announcement of the student competition winners. Winners at the undergrad and graduate levels will be determined not only by the weight of their crops, but also by their degree of participation and spirit.

Caltech president Jean-Lou Chameau and first lady Carol Carmichael will host an upcoming lunch for the undergraduate house that picks the most olives per resident, and Mannion will prepare a gourmet feast for the winning graduate team. Drs. Chameau and Carmichael are passionate about the campus's olive trees and have been strong supporters of the harvest since its inception in 2007.

Olives picked tomorrow during the festival will be shipped to Regalo Extra Virgin Olive Oil Inc., a nonprofit organization, for pressing, and the resulting oil will be processed and bottled by the Santa Barbara Olive Company. Depending on the harvest, anywhere from 50 to 150 gallons of oil will be produced. Previous years have yielded as much as 6,000 pounds of olives and 127 gallons of oil.

Caltech olive oil will be available for sale at the Caltech Bookstore in about a month—just in time for the holidays—and proceeds from the sales will benefit the student activities fund. For more information on the Olive Harvest Festival, please visit http://www.olives.caltech.edu/.

Writer: 
Andrew Allan
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Caltech Mourns the Passing of David G. Goodwin

1957–2012

David G. Goodwin, professor of mechanical engineering and applied physics, emeritus, passed away at his home in Pasadena on Sunday, November 11, after a five-year battle with brain cancer and a struggle with Parkinson's disease that began in 1998. He was 55 years old. Born on October 15, 1957, Goodwin grew up in Rancho Cordova, a suburb of Sacramento, near the Aerojet plant where his father worked as an engineer. He came to Caltech in 1988 as an assistant professor of mechanical engineering, was promoted to associate professor of mechanical engineering and applied physics in 1993 and professor in 2000, and retired in 2011.

Goodwin was best known for developing ways to grow thin films of high-purity diamond. Diamond films—transparent, scratch-resistant, and efficient dissipaters of the heat generated by high-powered computer chips—are now routinely used to protect electronic and optical components, and diamond-coated drill bits can be found at any hardware store.

But the diamond work was just one facet of Goodwin's research. According to longtime collaborator David Boyd, once a postdoc of Goodwin's and now a Caltech staff member, "Dave's real passion was modeling. He felt that he never fully understood something unless he could model it. He had a keen insight into how things work. He would proffer an oftentimes very simple explanation that captured the essential physics, and was able to see how that applied in engineering terms. It's really unusual for an engineer to know that much physics, or a physicist to have that much engineering."

The Mideast oil crises of Goodwin's teenage years sparked a lifelong interest in energy issues, and much of his work revolved around the intricacies of combustion. He fluently translated the complex interplay of heat flow and atomic behavior within swirling mixtures of turbulent gases into detailed mathematical models that accurately predicted how real-world, industrial-scale chemical processors would operate.

After earning his BS in engineering from Harvey Mudd College in 1979, Goodwin joined the Stanford University High Temperature Gasdynamics Laboratory, which was working on an ultraefficient method for generating electricity by burning coal at very high temperatures to create an electrically charged plasma. The process proved too expensive to be practical, but the mastery Goodwin acquired of chemical kinetics—the mathematical descriptions of how reactions proceed—set the course of his career. He earned his MS and PhD in 1980 and 1986 respectively, both in mechanical engineering.

Goodwin arrived at Caltech amid an explosion of interest in growing diamond coatings via chemical vapor deposition. The process is high-tech, but the basic idea is simple. Playing a methane flame over an object deposits carbon atoms on its surface, and under the right conditions these atoms will organize themselves into a sheen of high-purity diamond instead of the usual smudge of soot. "People had found a process that worked," says Boyd, "but really did not know how or why it did." Goodwin's models explained it all, and the set of papers he published beginning in 1990 "really turned artificial diamond into an engineering material," says Harry Atwater, the Hughes Professor and professor of applied physics and materials science, and director of the Resnick Sustainability Institute.

But far beyond that, "Dave was one of these people whose impact you measure by the codes he wrote for others to use," Atwater says. Goodwin began writing code in earnest in the 1990s, when he led the Virtual Integrated Prototyping project for the Defense Advanced Research Projects Agency. This sprawling endeavor, on which Atwater was a collaborator, created a set of simulations that began at the atomic level and went up to encompass an entire chemical reactor in order to figure out how to grow superconducting metal oxides and other thin films with demanding atomic arrangements. Atwater and Goodwin then built the reactor, which is still in use at Caltech and whose design has been widely copied.

Along the way, Goodwin wrote an extensive overhaul of CHEMKIN (for "chemical kinetics"), a collection of programs that had been developed at Sandia National Laboratories in the 1970s and had quickly gone into worldwide use. He then wrote—from scratch—his own software toolkit for modeling basic thermodynamics and chemical kinetics, which he dubbed Cantera. Breaking with the usual practice of creating a convoluted descriptor to yield a clever acronym, Cantera doesn't stand for anything, says Professor of Mechanical Engineering Tim Colonius. "He just wanted to give it a nice soothing, relaxing name, like pharmaceutical companies do. That was typical of his sense of humor." The open-source code is available pro bono and has been downloaded 120,000 times since 2004, according to Sandia's Harry Moffat, one of Cantera's current developers and the manager of the website. Says Moffat, "We have ventured into areas that CHEMKIN cannot go, including liquid-solid interactions and electrochemical applications such as batteries."

Goodwin also found time to court Frances Teng, an obstetrician-gynecologist at nearby Huntington Hospital, whose own parents had gotten married while postdocs at Caltech in the 1960s. Dave and Frances were married at the Athenaeum, Caltech's faculty club, in April 1993.

Goodwin eventually returned to the energy issues that had motivated him to become an engineer in the first place. "He really pushed us to start teaching some energy-related courses in the early 2000s," says Vice Provost Melany Hunt, the Kenan Professor of Mechanical Engineering, and the executive officer for mechanical engineering at the time. This led to ME 122, Sustainable Energy Engineering, which Goodwin inaugurated in 2008. ME 122 lives on as the centerpiece of the Energy Science and Technology option, now renumbered EST/EE/ME 109 and renamed Energy: Supply and Demand.

During that time Goodwin also collaborated on three major fuel-cell projects with Sossina Haile, professor of materials science and chemical engineering, in which he modeled the processes by which fuel molecules reacted with oxygen ions to produce electricity. "Dave was looking at it from a computational perspective, and we were looking at it from an experimental perspective," says Haile. "He pulled together all that we know from fundamental physics and chemistry to say, 'This is how the fuel cell works, and this is how to configure it so that it will actually deliver the power that you want.' Most people do a lot of parameter fitting and approximations, but he treated the problem in a very physics-based, solid way."

Goodwin was as active in the greater life of the Institute as he was in his lab. He served on the faculty board from 1996 to 1999 and from 2001 to 2005, the last two years as faculty chair. During that time, he successfully lobbied to extend the timetable for granting junior faculty tenure in cases of childbirth or adoption, Hunt says. "Dave was always concerned about diversity issues. He would say, 'Are there women coming in? Are there minority students coming in? We should make sure that we are doing things to ensure that we have a diverse group coming in to Caltech.'" Hunt recalls that when two young women wanted to take a class that wasn't offered that year, "Dave met with them in his office three times a week. He wanted to be helpful. He just felt a responsibility to do it."

"The thing that was remarkable about David Goodwin," says Haile, "was that when he was diagnosed with this rare form of cancer for which there is no rhyme or reason, he said, 'I'm so glad that I lived my life in a healthy way and that I didn't do anything that caused this,' not 'I can't believe I lived my life in such a healthy way, and it's so unfair that I got struck by this.' It was stunning. He had an incredibly optimistic view."

"Dave made you happy whenever you ran into him," says Kaushik Bhattacharya, the Howell N. Tyson, Sr., Professor of Mechanics and professor of materials science, and executive officer for mechanical and civil engineering. "You could go into his office and have a wonderful conversation about any topic in the world. He had an easy smile and a wicked sense of humor."

Goodwin's honors include five years as a National Science Foundation Presidential Young Investigator and two NASA Certificates of Recognition for his diamond-film work. He was a member of the Electrochemical Society, the American Chemical Society, the Combustion Institute, the American Physical Society, the American Society of Mechanical Engineers, and the Materials Research Society. He wrote or coauthored more than 60 papers.

In his spare time, Goodwin was an accomplished guitarist, a skilled woodworker who made several pieces of furniture for the family's Craftsman house, and a prolific painter in oils.

Goodwin is survived by his parents, George and Verma Goodwin, of Cameron Park, California; his sisters, Ellen Goodwin Levy of Sacramento and Jennifer Goodwin Smith of Elk Grove; his wife, Frances Teng; and his children, Tim, 18, and Erica, 15.

A memorial service will be held on January 12, 2013, at 1:00 p.m. at the Caltech Athenaeum, and an annual speakership in mechanical engineering is being established in his honor; contributions to the David Goodwin Memorial Lectureship can be made here

Writer: 
Douglas Smith
Frontpage Title: 
David G. Goodwin, 1957–2012
Listing Title: 
David G. Goodwin, 1957–2012
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Pages

Subscribe to RSS - environment_and_sustainability