Caltech, MIT Chemists Look for Better Waysto Use Chemical Bonds to Store Solar Energy

PASADENA, Calif.-With gasoline prices hovering at $3 per gallon, probably few Americans need convincing that another energy crisis is imminent. But what precisely is to be done about our future energy needs is still a puzzle. There's talk about a "hydrogen economy," but hydrogen itself poses some formidable challenges.

The key challenge is, of course, how to make the hydrogen in the first place. The best and cheapest methods currently available involve burning coal or natural gas, which means more greenhouse gases and more pollution. Adopting the cheapest method by using natural gas would merely result in replacing our dependence on foreign oil with a dependence on foreign gas.

"Clearly, one clean way to get hydrogen is by splitting water with sunlight," says Harry Gray, who is the Beckman Professor of Chemistry at the California Institute of Technology.

Gray is involved with several other Caltech and MIT chemists in a research program they call "Powering the Planet." The broadest goal of the project is to "pursue efficient, economical ways to store solar energy in the form of chemical bonds," according to the National Science Foundation (NSF). With a new seed grant from the NSF and the possibility for additional funding after the initial three-year period, the Caltech group says they now have the wherewithal to try out some novel ideas to produce energy cheaply and cleanly.

"Presently, this country spends more money in 10 minutes at the gas pump than it puts into a year of solar-energy research," says Nathan S. Lewis, the Argyros Professor and professor of chemistry. "But the sun provides more energy to the planet in an hour than all the fossil energy consumed worldwide in a year."

The reason that Gray and Lewis advocate the use of solar energy is that no other renewable resource has enough practical potential to provide the world with the energy that it needs. But the sun sets every night, and so use of solar energy on a large scale will necessarily require storing the energy for use upon society's demand, day or night, summer or winter, rain or shine.

As for non-renewable resources, nuclear power plants would do the job, but 10,000 new ones would have to be built. In other words, one new nuclear plant would have to come on-line every other day somewhere in the world for the next 50 years.

The devices used in a simple experiment in the high school chemistry lab to make hydrogen by electrolysis are not currently the cheapest ones to use for mass production. In fact, the tabletop device that breaks water into hydrogen and oxygen is perfectly clean (in other words, no carbon emissions), but it requires a platinum catalyst. And platinum has been selling all year for more than $800 per ounce.

The solution? Find something cheaper than platinum to act as a catalyst. There are other problems, but this is one that the Caltech group is starting to address. In a research article now in press, Associate Professor of Chemistry Jonas Peters and his colleagues demonstrate a way that cobalt can be used for catalysis of hydrogen formation from water.

"This is a good first example for us," says Peters. "A key goal is to try to replace the current state-of-the-art platinum catalyst, which is extremely expensive, with something like cobalt, or even better, iron or nickel. We have to find a way to cheaply make solar-derived fuel if we are to ever really enable widespread use of solar energy as society's main power source."

"It's also a good example because it shows that the NSF grant will get us working together," adds Gray. "This and other research results will involve the joint use of students and postdocs, rather than individual groups going it alone."

In addition to the lab work, the Caltech chemists also have plans to involve other entities outside campus--both for practical and educational reasons. One proposal is to fit out a school so that it will run entirely on solar energy. The initial conversion would likely be done with existing solar panels, but the facility would also serve to provide the researchers with a fairly large-scale "lab" where they can test out new ideas.

"We'd build it so that we could troubleshoot solar converters we're working on," explains Gray.

The ultimate lab goal is to have a "dream machine with no wires in it," Gray says. "We visualize a solar machine with boundary layers, where water comes in, hydrogen goes out one side, and oxygen goes out the other."

Such a machine will require a lot of work and a number of innovations and breakthroughs, but Lewis says the future of the planet depends on moving away from fossil fuels.

"If somebody doesn't figure this out, and fast, we're toast, both literally and practically, due to a growing dependence on foreign oil combined with the increasing projections of global warming."

The NSF grant was formally announced August 11 as a means of funding a new group of chemical bonding centers that will allow research teams to pursue problems in a manner "that's flexible, tolerant of risk, and open to thinking far outside the box." The initial funding to the Caltech and MIT group for the "Powering the Planet" initiative is $1.5 million for three years, with the possibility of $2 to $3 million per year thereafter if the work of the center appears promising.

In addition to Gray, Lewis, and Peters, the other Caltech personnel include Jay Winkler and Bruce Brunschwig, both chemists at Caltech's Beckman Institute. The two faculty members from MIT involved in the initiative are Dan Nocera and Kit Cummins.

Jonas Peters's paper will appear in an upcoming issue of the journal Chemical Communications. In addition to Peters and Lewis, the other authors are Brunschwig, Xile Hu, a postdoctoral researcher in chemistry at Caltech, and Brandi Cossairt, a Caltech undergraduate.

 

Writer: 
Robert Tindol
Writer: 

Caltech wins Energy Star Award

PASADENA, Calif. - The Caltech community can take comfort in knowing that the fuel used to generate electricity is spent wisely and is environmentally friendly.

That's what the Combined Heat and Power (CHP) Partnership, a division of the Environmental Protection Agency (EPA), concluded last month when it bestowed, on behalf of the EPA and the Department of Energy, the 2004 Energy Star CHP Award to Caltech.

"Through the recovery of otherwise waste heat for campus cooling and heating, Caltech has demonstrated leadership in energy use and management," the award's announcement letter read. "Caltech's CHP system is a great example for other facilities across the nation."

Caltech's CHP system can boast an efficiency of 73 percent, which means that the system uses approximately 30 percent less fuel than equivalent separate heat and power systems.

The Institute's aging 6 megawatt CHP system was replaced in 2003 with a highly efficient, natural-gas-burning 12.5 megawatt system that not only reduces polluting emissions by 15 percent but is also able to generate up to 90 percent of the energy consumed on campus.

The new system will help the City of Pasadena avoid the dreaded rolling blackouts and brownouts California has seen in prior years.

MEDIA CONTACT: Mark Wheeler (626) 395-8733 wheel@caltech.edu

Visit the Caltech media relations website: http://pr.caltech.edu/media

Writer: 
MW
Writer: 

Size Does Matter - When it Comes to Reducing Environmental Pollution

PASADENA, Calif.-When it comes to mitigating the harmful impacts of environmental pollution--size does matter . . . or, at least, that's the hypothesis that California Institute of Technology professors Janet Hering and Richard Flagan will be testing.

Hering is professor of environmental science and engineering executive officer for Keck Laboratories. Flagan is executive officer of chemical engineering Irma and Ross McCollum professor of chemical engineering and professor of environmental science and engineering.

In a study funded by the Camille and Henry Dreyfus Foundation, Hering and Flagan will examine whether the effectiveness of iron nanoparticles in pollution remediation is influenced by their size. The $120,000 grant, under the Dreyfus Foundation's 2004 Postdoctoral Program in Environmental Chemistry, will be used to recruit a postdoctoral scientist to conduct research in environmental chemistry.

Specifically, the researchers will utilize this grant to examine effective strategies for reduction and mitigation of environmental pollutants in aquatic ecosystems. Ultimately, the study seeks to help provide viable, cost-effective commercial technologies for the remediation of certain contaminants, including groundwater contaminants, chlorinated solvents, nitrates, pesticides, various chemical by-products, residue created in manufacturing, and other industrial or inorganic contaminants.

The study, "Use of Vapor-Phase Synthesized Iron Nanoparticles to Examine Nanoscale Reactivity," will investigate whether reactivity and effectiveness of iron nanoparticles, in pollution mitigation, are influenced by their size. The study will compare particles in different size classes to determine whether nanoparticles exhibit enhanced reactivity in the reduction of organic substrates based on their size when surface area effects are accounted for.

Elemental iron [Fe(0)], or zero-valent iron, has been demonstrated to be an effective reductant for a wide range of environmental contaminants, including both organic and inorganic contaminants. Upon reaction with Fe(0), some contaminants can be transformed to products that are non-toxic or immobile. Fe(0) can be delivered to the subsurface environment by injection of Fe(0) nanoparticles.

If research results yield a conclusion that the size of Fe(0) nanoparticles does make a difference in their reactivity or effectiveness, then this finding will have a significant effect on the application of Fe(0) materials in environmental remediation and will provide insight into the fundamental chemical properties and behavior of nanoparticles in these applications.

Created in 1946, the Camille and Henry Dreyfus Foundation bears the names of modern chemistry pioneers Drs. Camille Dreyfus and his brother Henry. The foundation's mandate is "to advance the science of chemistry, chemical engineering, and related sciences as a means of improving human relations and circumstances throughout the world." The foundation directs much of its resources to the support of excellence in teaching and research by outstanding chemistry faculty at universities and colleges.

Writer: 
DWH
Writer: 
Exclude from News Hub: 
No

Unexpected Changes in Earth's Climate Observed on the Dark Side of the Moon

PASADENA, Calif.—Scientists who monitor Earth's reflectance by measuring the moon's "earthshine" have observed unexpectedly large climate fluctuations during the past two decades. By combining eight years of earthshine data with nearly twenty years of partially overlapping satellite cloud data, they have found a gradual decline in Earth's reflectance that became sharper in the last part of the 1990s, perhaps associated with the accelerated global warming in recent years. Surprisingly, the declining reflectance reversed completely in the past three years. Such changes, which are not understood, seem to be a natural variability of Earth's clouds.

The May 28, 2004, issue of the journal Science examines the phenomenon in an article, "Changes in Earth's Reflectance Over the Past Two Decades," written by Enric Palle, Philip R. Goode, Pilar Montañes Rodríguez, and Steven E. Koonin. Goode is distinguished professor of physics at the New Jersey Institute of Technology (NJIT), Palle and Montañes Rodríguez are postdoctoral associates at that institution, and Koonin is professor of theoretical physics at the California Institute of Technology. The observations were conducted at the Big Bear Solar Observatory (BBSO) in California, which NJIT has operated since 1997 with Goode as its director. The National Aeronautics Space Administration funded these observations.

The team has revived and modernized an old method of determining Earth's reflectance, or albedo, by observing earthshine, sunlight reflected by the Earth that can be seen as a ghostly glow of the moon's "dark side"—or the portion of the lunar disk not lit by the sun. As Koonin realized some 14 years ago, such observations can be a powerful tool for long-term climate monitoring. "The cloudier the Earth, the brighter the earthshine, and changing cloud cover is an important element of changing climate," he said.

Precision earthshine observations to determine global reflectivity have been under way at BBSO since 1994, with regular observations commencing in late 1997.

"Using a phenomenon first explained by Leonardo DaVinci, we can precisely measure global climate change and find a surprising story of clouds. Our method has the advantage of being very precise because the bright lunar crescent serves as a standard against which to monitor earthshine, and light reflected by large portions of Earth can be observed simultaneously," said Goode. "It is also inexpensive, requiring only a small telescope and a relatively simple electronic detector."

By using a combination of earthshine observations and satellite data on cloud cover, the earthshine team has determined the following:

= Earth's average albedo is not constant from one year to the next; it also changes over decadal timescales. The computer models currently used to study the climate system do not show such large decadal-scale variability of the albedo.

= The annual average albedo declined very gradually from 1985 to 1995, and then declined sharply in 1995 and 1996. These observed declines are broadly consistent with previously known satellite measures of cloud amount.

= The low albedo during 1997-2001 increased solar heating of the globe at a rate more than twice that expected from a doubling of atmospheric carbon dioxide. This "dimming" of Earth, as it would be seen from space, is perhaps connected with the recent accelerated increase in mean global surface temperatures.

= 2001-2003 saw a reversal of the albedo to pre-1995 values; this "brightening" of the Earth is most likely attributable to the effect of increased cloud cover and thickness.

These large variations, which are comparable to those in the earth's infrared (heat) radiation observed in the tropics by satellites, comprise a large influence on Earth's radiation budget.

"Our results are only part of the story, since the Earth's surface temperature is determined by a balance between sunlight that warms the planet and heat radiated back into space, which cools the planet," said Palle. "This depends upon many factors in addition to albedo, such as the amount of greenhouse gases (water vapor, carbon dioxide, methane) present in the atmosphere. But these new data emphasize that clouds must be properly accounted for and illustrate that we still lack the detailed understanding of our climate system necessary to model future changes with confidence." Goode says the earthshine observations will continue for the next decade. "These will be important for monitoring ongoing changes in Earth's climate system. It will also be essential to correlate our results with satellite data as they become available, particularly for the most recent years, to form a consistent description of the changing albedo. Earthshine observations through an 11-year solar cycle will also be important to assessing hypothesized influences of solar activity on climate."

Montañes Rodríguez says that to carry out future observations, the team is working to establish a global network of observing stations. "These would allow continuous monitoring of the albedo during much of each lunar month and would also compensate for local weather conditions that sometimes prevent observations from a given site." BBSO observations are currently being supplemented with others from the Crimea in the Ukraine, and there will soon be observations from Yunnan in China, as well. A further improvement will be to fully automate the current manual observations. A prototype robotic telescope is being constructed and the team is seeking funds to construct, calibrate, and deploy a network of eight around the globe.

"Even as the scientific community acknowledges the likelihood of human impacts on climate, it must better document and understand climate changes," said Koonin. "Our ongoing earthshine measurements will be an important part of that process."

Writer: 
Robert Tindol
Writer: 

Atmospheric scientists still acquire samples the old-fashioned way--by flying up and getting them

PASADENA, Calif.—Just as Ishmael always returned to the high seas for whales after spending time on land, an atmospheric researcher always returns to the air for new data.

All scientific disciplines depend on the direct collection of data on natural phenomena to one extent or another. But atmospheric scientists still find it especially important to do some empirical data-gathering, and the best way to get what they need is by taking up a plane and more or less opening a window.

At the California Institute of Technology, where atmospheric science is a major interest involving researchers in several disciplines, the collection of data is considered important enough to justify the maintenance of a specially equipped plane dedicated to the purpose. In addition to the low-altitude plane, several Caltech researchers who need higher-altitude data are also heavy users of the jet aircraft maintained by NASA for its Airborne Science Program--a longstanding but relatively unsung initiative with aircraft based at the Dryden Flight Research Center in California's Mojave Desert.

"The best thing about using aircraft instead of balloons is that you are assured of getting your instruments back in working order," says Paul Wennberg, professor of atmospheric chemistry and environmental engineering science. Wennberg, whose work has been often cited in policy debates about the human impact on the ozone layer, often relies on the NASA suborbital platforms (i.e., various piloted and drone aircraft operating at mid to high altitudes) to collect his data.

Wennberg's experiments typically ride on the high-flying ER-2, which is a revamped reconnaissance U-2. The plane has room for the pilot only, which means that the experimental equipment has to be hands-free and independent of constant technical attention. Recently, Wennberg's group has made measurements from a reconfigured DC-8 that has room for some 30 passengers, depending on the scientific payload, but the operating ceiling is some tens of thousands of feet lower than that of the ER-2.

"The airplane program has been the king for NASA in terms of discoveries," Wennberg says. "Atmospheric science, and certainly atmospheric chemistry, is still very much an observational field. The discoveries we've made have not been by modeling, but by consistent surprise when we've taken up instruments and collected measurements."

In his field of atmospheric chemistry, Wennberg says the three foundations are laboratory work, synthesis and modeling, and observational data--the latter being still the most important.

"You might have hoped we'd be at the place where we could go to the field as a confirmation of what we did back in the lab or with computer programs, but that's not true. We go to the field and see things we don't understand."

Wennberg sometimes worries about the public perception of the value of the Airborne Science Program because the launching of a conventional jet aircraft is by no means as glamorous or romantic as the blasting off of a rocket from Cape Canaveral. By contrast, his own data-collection would appear to most as bread-and-butter work involving a few tried-and-true jet airplanes.

"If you hear that the program uses 'old technology,' this refers to the planes themselves and not the instruments, which are state-of-the-art," he says. "The platforms may be old, but it's really a vacuous argument to say that the program is in any way old.

"I would argue that the NASA program is a very cost-effective way to go just about anywhere on Earth and get data."

Chris Miller, who is a mission manager for the Airborne Science Program at the Dryden Flight Research Center, can attest to the range and abilities of the DC-8 by merely pointing to his control station behind the pilot's cabin. On his wall are mounted literally dozens of travel stick-ons from places around the world where the DC-8 passengers have done research. Included are mementos from Hong Kong, Singapore, New Zealand, Australia, Japan, Thailand, and Greenland, to name a few.

"In addition to atmospheric chemistry, we also collect data for Earth imaging, oceanography, agriculture, disaster preparedness, and archaeology," says Miller. "There can be anywhere from two or three to 15 experiments on a plane, and each experiment can be one rack of equipment to half a dozen."

Wennberg and colleagues Fred Eisele of the National Center for Atmospheric Research and Rick Flagan, who is McCollum Professor of Chemical Engineering, have developed special instrumentation to ride on the ER-2. One of their new instruments is a selected-ion- chemical ionization mass spectrometer, which is used to study the composition of the atmospheric aerosols and the mechanisms that lead to its production.

Caltech's Nohl Professor and professor of chemical engineering, John Seinfeld, conducts an aircraft program that is a bit more down-to-earth, at least in the literal sense.

Seinfeld is considered perhaps the world's leading authority on atmospheric particles or so-called aerosols--that is, all the stuff in the air like sulfur compounds and various other pollutants not classifiable as a gas. Seinfeld and his associates study primarily atmospheric particles, their size, their composition, their optical properties, their effect on solar radiation, their effect on cloud formation, and ultimately their effect on Earth's climate.

"Professor Rick Flagan and I have been involved for a number of years in an aircraft program largely funded by the Office of Naval Research, and established jointly with the Naval Postgraduate School in Monterey. The joint program was given the acronym CIRPAS," says Seinfeld, explaining that CIRPAS, the Center for Interdisciplinary Remotely Piloted Aircraft Studies, acknowledges the Navy's interest in making certain types of environmental research amenable for drone aircraft like the Predator.

"The Twin Otter is our principal aircraft, and it's very rugged and dependable," he adds. "It's the size of a small commuter aircraft, and it's mind-boggling how much instrumentation we can pack in this relatively small aircraft."

Caltech scientists used the plane in July to study the effects of particles on the marine strata off the California coast, and the plane has also been to the Canary Islands, Japan, Key West, Florida, and other places. In fact, the Twin Otter can essentially be taken anywhere in the world.

One hot area of research these days, pardon the term, is the interaction of particulate pollution with radiation from the sun. This is important for climate research, because, if one looks down from a high-flying jet on a smoggy day, it becomes clear that a lot of sunlight is bouncing back and never reaching the ground. Changing atmospheric conditions therefore affect Earth's heat balance.

"If you change properties of clouds, then you change the climatic conditions on Earth," Seinfeld says. "Clouds are a major component in the planet's energy balance."

Unlike the ER-2, in which instrumentation must be contained in a small space, the Twin Otter can accommodate onboard mass spectrometers and such for onboard direct logging and analysis of data. The data are streamed to the ground in real time, which means that the scientists can sit in the hangar and watch the data come in. Seinfeld himself is one of those on the ground, leaving the two scientist seats in the plane to those whose instruments may require in-flight attention.

"We typically fly below 10,000 feet because the plane is not pressurized. Most of the phenomena we want to study occur below this altitude," he says.

John Eiler, associate professor of geochemistry, is another user of the NASA Airborne Research Program, particularly the air samples returned by the ER-2. Eiler is especially interested these days in the global hydrogen budget, and how a hydrogen-fueled transportation infrastructure could someday impact the environment.

Eiler and Caltech professor of planetary science Yuk Yung, along with lead author Tracey Tromp and several others, issued a paper on the hydrogen economy in June that quickly became one of the most controversial Caltech research projects in recent memory. Using mathematical modeling, the group showed that the inevitable leakage of hydrogen in a hydrogen-fueled economy could impact the ozone layer.

More recently Eiler and another group of collaborators, using samples returned by the ER-2 and subject to mass spectroscopy, have reported further details on how hydrogen could impact the environment. Specifically, they capitalized on the ER-2's high-altitude capabilities to collect air samples in the only region of Earth where's it's simple and straightforward to infer the precise cascade of reactions involving hydrogen and methane.

Though it seems contradictory, the Eiler team's conclusion from stratospheric research was that the hydrogen-eating microbes in soils can take care of at least some of the hydrogen leaked by human activity.

"This study was made possible by data collection," Eiler says. "So it's still the case in atmospheric chemistry that there's no substitute for going up and getting samples."

Writer: 
RT
Writer: 
Exclude from News Hub: 
No

Caltech Researchers to Receive Award for Environmental Contribution

PASADENA, Calif. – With the presentation of the prestigious Jack Edward McKee Medal to Hui-Ming Hung, Joon-Wun Kang, and Michael R. Hoffmann, the Water Environment Federation (WEF) is recognizing the environmental importance of the three scientists' work.

The McKee Medal, named for the past WEF president and Caltech professor, was created to honor achievement in groundwater protection, restoration, and sustainable use. The medal is awarded for significant contributions to the field of groundwater science or engineering, published in any WEF journal.

The three scientists are being honored for their article, "The Sonolytic Destruction of Methyl tert-butyl Ether Present in Contaminated Groundwater," which was published in the December 2002 issue of Water Environment Research.

Hoffmann is the James Irvine Professor of Environmental Science and the dean of graduate studies at Caltech. Hung received her PhD under Hoffmann's tutelage and is currently a postdoctoral researcher at Harvard University. Kang spent a year as a visiting associate in Hoffmann's laboratory and is currently a professor in the department of industrial environment and health, Yonsei University, Korea.

Since 1990, methyl tert-butyl ether (MTBE) has been added to gasoline to meet the oxygenate requirements established by Congress in the Clean Air Act Amendments. Oxygenates are a family of chemicals that increase the oxygen content of gasoline, thereby allowing cleaner and more complete consumption of the fuel. MTBE, because it is less expensive and easier to transport than other oxygenates, has been extensively used by refiners and is found in close to 90 percent of treated gasoline. MTBE-treated gasoline has helped to improve air quality, reducing smog-forming pollutants by at least 105,000 tons and toxins by at least 24, 000 tons annually.

However, the benefits of MTBE come at a price. Leaks from storage containers and spills during transportation have led to a growing problem of MTBE contaminating groundwater, including drinking-water sources. The potential health risks of MTBE have not yet been determined, but the offensive odor and taste of the chemical can make water undrinkable. Because MTBE is not as biodegradable as other gasoline components, it has become a persistent problem that traditional methods of decontamination have proved unsuccessful in treating.

In their paper, Hung, Kang, and Hoffmann applied the established technique of ultrasonic irradiation to the removal of MTBE from a crude sample of contaminated groundwater. They first analyzed the mechanism of ultrasonic degradation in pure water spiked with MTBE, and then compared the degradation in the spiked sample to that in water collected beneath JFK International Airport, New York. They demonstrated that the destruction of the MTBE in the crude sample occurred efficiently, thus establishing the usefulness of ultrasonic irradiation for decontamination. Their thorough characterization of this technique has laid the groundwork for the development of a practical system for the efficacious removal of MTBE from contaminated groundwater.

WEF will recognize the three scientists on October 14 during WEFTEC.03, the largest water-quality conference and exhibition in North America. This year marks the 76th annual meeting which will be held from October 11 to 15 at the Los Angeles Convention Center. ###

MEDIA CONTACT: Katherine Poulin, volunteer Caltech Media Relations (626) 395-3226 poulin@its.caltech.edu

Visit the Caltech media relations web site: http://pr.caltech.edu/media

Writer: 
KP
Exclude from News Hub: 
Yes

Environmental sustainability in Los Angeles to be focus of two-day conference at Caltech

As Los Angeles continues to grow, the issue of how to keep the environment healthy and sustainable will become increasingly important for policy planners, environmentalists, and developers alike.

To address these matters, a two-day conference titled "A Sustainable Future? Environmental Patterns and the Los Angeles Past" will be held on the California Institute of Technology campus September 19-20. The conference, sponsored by the Haynes Foundation of Los Angeles, is free and open to the general public, and all interested parties are encouraged to attend.

According to William Deverell, who organized the conference as the John Randolph Haynes and Dora Haynes Foundation Fellow, the presenters will represent a wide variety of perspectives, including those of scientific researchers in seismology, air quality, water management, and weather. Other presenters will discuss the history of land and resource use in the Los Angeles basin, and still others will address issues that can be taken up by policymakers and legislators.

"We're not necessarily trying to have an immediate impact on public policy, but are mainly interested in getting a lot of people into the room who may have common interests but have never had the opportunity to talk to one another," says Deverell, an associate professor of history at Caltech and authority on the rise and development of Los Angeles.

All lectures will take place in Ramo Auditorium on the Caltech campus, beginning with coffee and registration on the Ramo Auditorium Mall at 8:30 a.m., Friday, September 19. At 9:30 a.m., the participants will be welcomed by Donn Miller, president of the Haynes Foundation, followed by Miriam Feldblum, special assistant to the president at Caltech; and Deverell.

The first session, beginning at 10 a.m., will focus on metropolitan nature and will feature a talk by Professor Greg Hise of USC, with commentary provided by Andy Lipkis, founder and president of the organization TreePeople. The second session, beginning at 11:30 a.m., will involve issues of sustainability and will include presentations by Andrew Roth of Pomona College concerning the Taylor Yard complex adjacent to the Los Angeles River; Janet Fireman, editor of California History, on the current status of the Cornfield park in downtown Los Angeles, and Marcus Renner of Occidental College, speaking on the Arroyo Seco, which runs from the San Gabriel Mountains to the Los Angeles River.

Following the 12:30 p.m. lunch, which is free to all those who register, the afternoon session will continue with a series of presentations on issues involving the Los Angeles basin. Presenters will include Caltech professors Janet Hering, on water quality in the Los Angeles basin; Kerry Sieh, on seismic history and contemporary earthquake concerns; and Andrew Ingersoll, on changing weather patterns in the basin.

The 3:30 p.m. session is titled "Prehistoric Landscapes and Finite Resources" and includes presenters Paula Schiffman and Mark Raab, both of Cal State Northridge; and Terry Young of Cal Poly Pomona. A reception will follow at 5 p.m., hosted by the Division of the Humanities and Social Sciences at Caltech.

The Saturday, September 20, sessions begin with coffee at 8:30 a.m., followed by a session on sustainability at 9:30 a.m. featuring presenters Robert Garcia of the Center for Law in the Public Interest and Tom Sitton of the Los Angeles County Museum of Natural History.

The 10:15 a.m. session on politics and economics will be a panel discussion involving Robert Gottlieb of Occidental College; Deborah Weintraub, the city architect of Los Angeles; David Abel of the Planning Report; Doug Gardner of Catellus Development Corp.; and Jennifer Wolch of USC.

The final session begins at 11:30 a.m. with a talk entitled "What Now? What Next?" to be given by writer D. J. Waldie.

All sessions are free and open to the public, but Deverell urges those interested in attending to send an e-mail in advance to info@haynesfoundation.org.

 

Writer: 
Robert Tindol
Writer: 

Caltech Installs Environmentally Friendly Power Generation SystemAnticipates Major Cost Savings

PASADENA, Calif.—The California Institute of Technology will begin start-up tests on a new $10 million cogeneration facility in July of this year. When fully operational, the new facility will save an additional $2.5 million per year in avoided energy costs above the savings of its predecessor and will reduce overall emissions by 66 percent.

The combined-cycle facility, which includes a 10-megawatt natural-gas turbine, a steam generator, and a 2.5-megawatt steam turbine, will provide electrical power and steam. The steam will be used for heating and air conditioning of campus buildings. The old gas/steam turbines produced 5.5-megawatts of power.

With this system the Institute will be able to produce power at a much lower cost. "We expect payback on our investment in roughly four to five years," says Reza Ohadi, director of campus operations.

By acting as the general contractor, Caltech is saving several million dollars in avoided management costs and fees on the project.

Art Elbert, associate vice president for campus planning, says a bond measure made the $10 million project possible for the 2,000-student campus.

Caltech is one of only a handful of universities nationwide to operate its own power plant. "The vast majority of college campuses buy their power from an external provider," says Ben Smith, facilities improvement program manager. "They don't have the facilities or personnel to run their own cogeneration plant."

The cogeneration team includes mechanics, engineers, electricians, system analysts, and other tradespeople, including subcontractors.

The new cogeneration facility is one of several ambitious projects designed to cut Caltech's energy costs and to ensure reliable power to the campus. Since last November, workers have gutted Central Plant of its old cogeneration system, the large jet aircraft engine that provided the campus with about 40 percent of its electrical power. The new facility will constitute Caltech's third-generation cogeneration plant—the first was built in 1968 and the second in 1982.

In July, when the project is completed, the new turbines will be capable of generating between 10 and 12 megawatts for a campus that requires up to 15 megawatts of power at the height of the summer; it will be providing approximately 80 to 90 percent of the power the Institute uses.

The Institute worked closely with the Southern California Air Quality Management Board when it selected its new equipment. The new facility will reduce its nitrous oxide emissions from 9 parts per million to 2.5 parts per million. "This will be the most efficient and cleanest burning engine that we've ever had," says Dan Buckelew, central utility plant supervisor.

Another major project will take advantage of the way the price of electricity varies during a 24-hour period. Power is more expensive during peak daytime hours and is cheaper at night. By constructing a thermal-energy storage facility, Caltech will be able to take advantage of off-peak hours to run its chillers and produce large quantities of chilled water, which will be stored under the north athletic field. During the day, the chillers will be turned off, and the chilled water will be routed throughout the campus, providing relief from high daytime temperatures. The cost of construction for the thermal-energy storage facility is estimated at about $6 million.

Elbert, who oversees all the construction, renovations, operations, and maintenance for Caltech, states that "any institution could take advantage of these kinds of savings. The payback is less than five years and the savings could be realized for a generation, making this a very attractive investment.

Contact: Jill Perry (626) 395-3226 jperry@caltech.edu

Visit the Caltech Media Relations Web site at: http://pr.caltech.edu/media

###

Writer: 
jp

Fuel Cells: Powering Progress in the 21st Century

PASADENA, Calif. – Continuing tensions in the Middle East make it clear that we face long-term challenges in meeting our ever increasing energy demands, while still maintaining the quality of our natural environment and ensuring our national security. Fuel cells offer a possible solution, but, before they meet their potential, many technical hurdles remain.

On Wednesday, January 29, Dr. Sossina M. Haile, an associate professor of materials science at the California Institute of Technology, will provide a brief overview of current fuel cell technology, then discuss her own work in this promising area. Whereas the most common type of fuel cell--the kind that powers prototype cars--is a polymer electrolyte fuel cell, Haile is taking a different tack, developing an alternative type of fuel cell based on a so-called solid acid.

Haile will describe the recent breakthroughs in this new technology and the challenges that remain. The ultimate goal, of course, is that such engineering in materials science may someday mean a fuel cell in your automobile, your laptop, or your home.

Caltech has offered the Watson Lecture Series for almost 80 years, since it was conceived by the late Caltech physicist Earnest Watson as a way to explain science to the local community. The lecture will take place at 8 p.m. in Beckman Auditorium, which is located near Michigan Avenue south of Del Mar Boulevard, on Caltech's campus in Pasadena. Seating is available on a free, no-ticket-required, first-come, first-served basis, beginning at 7:30 p.m. Parking is available in the lots south of Del Mar Boulevard between Wilson and Chester Avenues, and in the parking structures at 341 and 405 South Wilson and 370 South Holliston Avenue.

For more information, call 1(888) 2CALTECH (1-888-222-5832) or (626) 395-4652. Persons with disabilities: (626)-395-4688 (voice) or (626)-395-3700 (TDD).

Writer: 
MW
Exclude from News Hub: 
No

Caltech Professor to Explore Abrupt Climate Changes

PASADENA, Calif.—By analyzing stalagmites from caves in Sarawak, which is the Malaysian section of Borneo and the location of one of the world's oldest rain forests, and by studying deep-sea corals from the North Atlantic Ocean, California Institute of Technology researcher Jess Adkins will explore the vital link between the deep ocean, the atmosphere, and abrupt changes in global climates.

The project, "Linking the Atmosphere and the Deep Ocean during Abrupt Climate Changes," is funded by the Comer Science and Educational Foundation.

Because the Sarawak stalagmites and the deep-sea corals are uranium rich and can be dated precisely, and because they both accumulate continuously, uninterrupted by "bioturbation," the biological process that mixes the upper several centimeters of ocean sediments, they provide unique archives of climate history. By utilizing these archives, Adkins and his research group will be able to chart and link major climate variables, and thereby provide critical insight into understanding rapid climate changes that could impact the earth.

Adkins, an assistant professor of geochemistry and global environmental science, joined Caltech in 2000. He received his PhD in 1998 from the Massachusetts Institute of Technology Woods Hole Oceanographic Institute.

The Comer Science and Education Foundation was established to promote education and discovery through scientific exploration.

Contact: Deborah Williams-Hedges (626) 395-3227 debwms@caltech.edu

Visit the Caltech Media Relations Web site at: http://pr.caltech.edu/media

###

Writer: 
DWH
Writer: 

Pages

Subscribe to RSS - environment_and_sustainability