Thursday, September 24, 2015
Location to be announced

2015 Teaching Conference - Save-the-Date

InnoWorks 2015

Summertime Science Is Fun!

Caltech's InnoWorks team hosted 57 middle school students from across Southern California for a week of hands-on science and engineering projects in Caltech's Brown Gym. Their parents participated on the afternoon of Friday, June 19, as they watched robots built by their children compete on a slalom-like course.

The InnoWorks program was largely planned and run by Caltech undergraduates, according to Charles Wang, a junior majoring in computation and neural systems. A group of Caltech students spends the entire academic year on the logistics, recruiting other students to join in when the time comes. In fact, that's how Charles got involved—his sister Winnie Wang (BS '15) participated last year.

InnoWorks has 14 chapters at colleges across the country, and its activities are aimed at female and minority students who have traditionally been underrepresented in scientific and technical careers. Says Wang, "InnoWorks gives us a book of ideas, but we also have to design our own projects, and then we have to test everything to be sure that they actually work and are feasible in the time we've got."


Transferring the program from the laptop to the robot.

The week's curriculum consisted of 13 hands-on projects, including learning about density by placing eggs in fresh and saltwater (they sank in fresh water but floated in the saltwater); building and racing a Pinewood Derby-sized solar-powered car; and modeling a pollutant's dispersion into an aquifer by filling a plastic cup with water, gravel, and sand before "spilling" a dribble of food coloring on the surface. The most popular activity by far, though, was the Lego-based robot race in which the camp's participants were asked to build an "intelligent" autonomous vehicle—in some ways, a mini-Mars rover—from Lego bricks.


The connections from the controller to the drive motors and sensors are prominent in this rear view of one robot.

For the Lego project, the middle schoolers were divided into groups and assigned to tables of some half-dozen students each. Each table had a classroom version of the "Lego Mindstorms" robotics kit, which consists of a dishpan-sized tub containing a standardized assortment of Lego bricks, wheels, motors, and gears as well as a set of sensor bricks—a photocell, an ultrasound "radar," a pair of touch sensors, and a gyroscope—and a programmable microprocessor built into an oversized Lego brick about the size of a double deck of playing cards. The controller has a USB port for downloading programs from a laptop and phone jacks to connect with the sensors and motors. The programming software contains interlocking icons, not unlike jigsaw puzzle pieces, representing the sensor inputs, motor controllers, decision points, and so on. Selecting the appropriate icons and snapping them together "writes" the program by drawing a map of the robot's desired actions.


This robot has its "eye" as close to the ground as the parts would allow.

The goal was to build self-driving vehicles that could follow routes marked by lines of tape using the photocell sensor to "read" the contrast between the tape's edge and the tarp covering the basketball court's hardwood floor. The competition featured several courses of increasing difficulty, with the toughest course ending in a V-shaped turn intended to throw the machines off-track. Any robot failing to double back in time would run off the V's point, so the students had to design against a real-world engineering problem: How do you find your way back on course after making a wrong turn?


InnoWorks advisor Spiros Michalakis, at left, looks on as a robot takes a test drive.

The answer, says Spiros Michalakis, the InnoWorks team's staff adviser and a member of Caltech's Institute for Quantum Information and Matter, is "a double differential analysis, which means you have to look both left and right to find the edges. This is really hard when your kit only has one sensor." The photocell could be mounted on a sideways-scanning swivel, but most groups opted for a fixed downward-looking arrangement. But now the whole vehicle had to pivot in order to keep the edge in sight, so a robot attempting to follow a straight line would drive in an S-shaped trajectory across it. Says Michalakis, "This takes pretty high-level object-oriented programming. But they sat down and figured it out." According to Jacob (Coby) Abrahams, the junior majoring in geology who ran the robotics event, "This year we gave the kids way more time to solve the problem. Last year only two of the 10 or so teams were able to compete, and neither one finished the track. This year every team was competitive and most were pretty successful."

Aishwarya Mahesh, who attends Meadowbrook Middle School in Poway, has come to Caltech's InnoWorks the last four summers. Last year her school finished second in the Southern California FIRST Lego League, and, she says proudly, "We were invited to the international championship!" It was held in Arkansas, but she's quick to point out that a team from Japan won. Is a Caltech degree in her future? "Maybe," she says. "Or Stanford. But I don't know if it will be in robotics." But even if she opts for none of the above, she's definitely heading in the right direction.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

New Dean of Graduate Studies Named

On July 1, 2015, Doug Rees, the Roscoe Gilkey Dickinson Professor of Chemistry, will begin serving as the new dean of graduate studies at Caltech.

"Doug's experience and concern with graduate education make him an ideal choice for dean of graduate studies. I am very pleased that he is willing to make this commitment to the Institute and its students," says Anneila Sargent, vice president for student affairs and the Ira S. Bowen Professor of Astronomy.

As the new dean, Rees will be the principal administrator and representative of Caltech's graduate education program, responsible for attending to concerns regarding the welfare of graduate students as well as for upholding the Institute's rules and policies.

"There are many groups essential to the effective operation of our graduate program that I want to get to know better, starting with the graduate students, the Graduate Office staff, and the option administrators and option reps," says Rees. "In my 26 years at Caltech, I've gained an appreciation for how the graduate programs in biochemistry and molecular biophysics and in chemistry operate, but the cultures in different options across campus can vary significantly, and I look forward to better understanding these distinctions."

Rees says that he is also very much looking forward to working directly with graduate students, staff, and faculty on behalf of the graduate program. Of particular interest during his tenure will be issues relating to the well-being and professional development of graduate students.

"I find research to be an adventure that, while exhilarating, is also challenging, frustrating, and even stressful; those aspects, however, are not incompatible with having a positive student experience and a supportive environment," Rees says. He adds that his priorities will be to raise fellowship support, increase the diversity of the graduate student body, and ensure that students have access to appropriate support services such as health care, counseling, and day care. "In addition, I also hope to be able to explore mechanisms to better prepare students for life after Caltech, including both academic and nonacademic career options," he says.

In his new post, Rees will take the place of C. L. "Kelly" Johnson Professor of Aeronautics and Mechanical Engineering Joseph Shepherd, who has served as the dean of graduate studies since 2009. "Joe leaves big shoes to fill and the campus owes him a huge debt of gratitude for all he has accomplished as dean of graduate studies. What I have learned from watching him in action over the past six years, and more recently as he has been helping me during this transition period, is that the most important quality for the dean is to care about the students—and I will definitely be working to follow his example," Rees says.

Rees received his undergraduate degree from Yale University in 1974 and his PhD from Harvard in 1980, becoming a professor at Caltech in 1989. An investigator with the Howard Hughes Medical Institute, Rees also served as the executive officer for chemistry from 2002 to 2006 and the executive officer for biochemistry and molecular biophysics from 2007 to 2015.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Students in Bioengineering Course Take Inspiration from Nature

A new class in bioengineering debuted this term at Caltech: "Exploring Biological Principles Through Bio-Inspired Design" (BE 107). The class was the brainchild of Michael Dickinson, the Esther M. and Abe M. Zarem Professor of Bioengineering, and Richard Murray, the Thomas E. and Doris Everhart Professor of Control and Dynamical Systems and Bioengineering, who are hoping to make this a regular part of the curriculum at Caltech to create more opportunities for interdisciplinary work in biology.

"Design courses in which students actually build something are not uncommon in some academic disciplines—such as electrical engineering, mechanical engineering, industrial design, and so forth—but are quite rare in biology," Dickinson says. BE 107 was designed to redress this lack. In the course, students were required to either build a new instrument that could derive information from a biological system or create a hardware platform, such as a robot, that successfully mimics a given biological behavior.

On June 4, teams of two to three students presented their bioinspired creations to each other and to the professors, postdocs, and TAs who worked with them over the course of the term.

One student group pursued the first design option and developed a new instrument to track animal behavior—specifically, the rhythmic motions of jellyfish. The group's camera array and image processing and data analysis system observed jellyfish motion and output data that could then be analyzed and interpreted to reveal the frequency and size of jellyfish contractions, even in a tank with several jellyfish of different sizes and species.

Two other groups opted to create robots that mimicked an animal behavior. One such robot was designed to navigate through space via the "cast and surge" technique used by Drosophila, the common fruit fly, to detect and track an odor plume to its source, such as a tasty (to a fruit fly) piece of rotting fruit. The robot did not fly, nor did it smell, but it was engineered to roll along on four wheels in pursuit of a computer-generated spatial pattern that mimicked an odor plume.

The third team's robot was also a four-wheeled vehicle, but one designed to navigate through a lane marked out on a patch of campus concrete using patterns of polarized light in the sky created by the passage of sunlight and moonlight through the atmosphere. In nature, dung beetles, among other animals, use this type of navigation. The students tested their robot in the late afternoon, when the sun produces a polarization pattern that can be more easily tracked, and were able to get it to swing about in the sunshine in a not-quite-random dance.

Creating a bioinspired design is far from trivial. "Biological systems are much more complicated than engineered systems," Murray says, using a wide variety of sensory inputs to yield behavioral outputs. But this, says Dickinson, is one of the best aspects of the course: the opportunity "to make explicit comparisons between how nature constructs devices via evolution and how engineers design comparable machines."

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Caltech Seniors Win Library Friends Thesis Prize

Two Caltech seniors, Adam Jermyn and Kerry Betz, were named as winners of this year's Library Friends' Senior Thesis Prize. The Thesis Prize is intended to encourage undergraduates to complete a formal work of scholarship as a capstone project for their undergraduate career and to recognize sophisticated in-depth use of library and archival research. For their achievement, recipients of the $1,200 prize are listed in the commencement program.

Caltech faculty nominate seniors whose theses they deem to be deserving of the prize. Nominated students then supply a research narrative that explains their research methodology, detailing not only the sources they used, but the way they obtained access to them.

Adam Jermyn, a physics major from Longmeadow, Massachusetts, won the prize for his thesis titled "The Atmospheric Dynamics of Pulsar Companions." The Library Friends committee described it as a "tour de force in its breadth of scholarship, creativity and significance," and Jermyn's faculty adviser Sterl Phinney, professor of theoretical astrophysics and executive officer for astronomy, said in his nomination that the thesis is "comparable to the best PhDs in impact and innovation."

Jermyn's work is a study of the ways in which the radiation emitted from pulsars changes the atmospheres of other nearby stars. Pulsars are a highly magnetized and rapidly rotating type of neutron star, the dense remnants of a star gone supernova. They often orbit closely together with a low-mass "companion star" that can receive enormous amounts of radiation from the nearby pulsar.

"It's been a really fantastic experience. My mentor, Professor Phinney, has been amazing at encouraging me in productive directions and enthusiastically went along with me when I wanted to go off in a strange direction on a hunch," Jermyn says. "You think you've rounded the corner and found the answer, only to realize that you've just walked into more rich and complicated phenomena."

Jermyn, also the recipient of a Hertz Fellowship, a Marshall Scholarship, and a National Science Foundation Graduate Research Fellowship, will start his graduate work at the University of Cambridge in the fall.

 

Kerry Betz, a chemistry major from Boulder, Colorado, won the prize for her thesis titled "A Novel, General Method for the Construction of C-Si Bonds by an Earth-Abundant Metal Catalyst." Robert Grubbs, the Victor and Elizabeth Atkins Professor of Chemistry and Betz's faculty adviser, praised the thesis in his nomination for its "significance, creativity, and novelty."

Betz's work concerns the use of a new catalyst to form carbon-silicon bonds through a process called silylation. The newly discovered catalyst is highly efficient and can operate at room temperature and pressure. Traditionally these reactions require expensive and inefficient precious metal catalysts, such as platinum or palladium. Betz's catalyst is made from the abundant metal potassium, which is more effective than state-of-the-art precious metal complexes at running very challenging chemical reactions.

"I've done this research over the last three years, and I really enjoyed how writing it up brought it all together," says Betz. "Writing up my work revealed new questions and directions to pursue. It showed me how unpredictable and exciting research can be." She will continue her research at Caltech for a year and will then begin graduate studies at Stanford University in the fall of 2016.

 

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Students Win National and International Prizes

Caltech undergraduate and graduate students have collected an impressive array of awards this year, including three Fulbright grants, two Goldwater Scholarships, two Watson Fellowships, two Hertz Fellowships, a Soros Fellowship, a Marshall Scholarship, a Gates Cambridge Scholarship, and 31 National Science Foundation Fellowships.

Fulbright Fellowships

Seniors Jonathan Liu, Charles Tschirhart, and Caroline Werlang were selected as Fulbright Scholars. The Fulbright Program is the flagship international exchange program sponsored by the U.S. government. Seniors and graduate students who compete in the U.S. Fulbright Student Program can apply to one of the more than 160 countries whose universities are willing to host Fulbright Scholars. The scholarship sponsors one academic year of study or research abroad after the bachelor's degree. Liu, Tschirhart, and Werlang will be studying next year in Germany, England, and Switzerland, respectively.

Barry M. Goldwater Scholarships

Sophomore Saaket Agrawal and junior Paul Dieterle were awarded Barry M. Goldwater scholarships for the 2015–16 academic year. The Barry Goldwater Scholarship and Excellence in Education Program was established by Congress in 1986 to award scholarships to college students who intend to pursue research careers in science, mathematics, and engineering.

Thomas J. Watson Fellowships

Seniors Janani Mandayam Comar and Aaron Krupp were named 2015 Thomas J. Watson Fellowship winners. Each fellowship is a grant of $30,000 awarded to seniors graduating from a selected group of colleges. According to the Watson Foundation's website, "Fellows conceive original projects, execute them outside of the United States for one year and embrace the ensuing journey. They decide where to go, who to meet and when to change course." Fifty fellows were selected from a pool of nearly 700 candidates.

Hertz Fellowships

Caltech seniors Adam Jermyn and Charles Tschirhart were named 2015 Hertz Fellowship winners. Selected from a pool of approximately 800 applicants, the awardees will receive up to five years of support for their graduate studies. According to the Hertz Foundation, fellows are chosen for their intellect, their ingenuity, and their potential to bring meaningful improvement to society.

Paul & Daisy Soros Fellowship for New Americans

Mohamad Abedi, a PhD candidate in bioengineering, received a Paul & Daisy Soros Fellowship for New Americans. Thirty fellows, selected from nearly 1,200 applicants "for their potential to make significant contributions to U.S. society, culture, or their academic field," receive up to $90,000 to help cover two years of tuition, and other educational and living expenses, while studying any subject at any university in the United States. The fellowship was established to assist young new Americans—permanent residents, naturalized citizens, or children of naturalized citizen parents—at critical points in their educations.

Gates Cambridge Scholarship

Senior Connie Hsueh, a physics major, was awarded a 2015 Gates Cambridge Scholarship that will fund graduate studies at the University of Cambridge. The Gates Cambridge Scholarship program, established in 2000 through a donation to Cambridge University from the Bill and Melinda Gates Foundation, recognizes young people from around the world who not only excel academically, but also display a commitment to social issues and bettering the world. Hsueh was selected from a pool of 755 applicants.

Marshall Scholarship

Senior Adam Jermyn received the 2015 Marshall Scholarship to pursue graduate studies in Great Britain. Funded by the British government, the Marshall Scholarship provides support for two years of post–bachelor's degree study—covering a student's tuition, books, living expenses, and transportation costs—at any university in the United Kingdom. Each year more than 900 students from across the nation compete for this prestigious scholarship.

NSF Graduate Research Fellowships

The National Science Foundation (NSF) selected 31 current Caltech students and 12 alumni to receive its Graduate Research Fellowships. The awards support three years of graduate study within a five-year fellowship period in research-based master's or doctoral programs in science or engineering.

Caltech's awardees for 2015 are seniors Bridget Connor, Boyu Fan, Mark Greenfield, Bryan He, Adam Jermyn, Robert F. Johnson, Ellen Price, Charles Tschirhart, Max Wang, Benjamin Wang, Caroline Werlang, Patrick Yiu, and Andy J. Zhou; and graduate students Louisa Avellar, Dawna Bagherian, Kevin Cherry, Rebecca Glaudell, Elizabeth Goldstein, Denise Grunenfelder, Nina Gu, Elizabeth Holman, Erik Jue, Kyle Metcalfe, Kelsey Poremba, Denise Schmitz, Rebekah Silva, Chanel Valiente, Grigor Varuzhanyan, Ryan Witkosky (also an alumnus), Emily Wyatt, and Nicole Xu. Caltech alumni in the 2015 class of Graduate Fellows are Karen Dowling, Melissa Hubisz, Pawel Latawiec, Laura Lindzey, Katja Luxem, Rocio Mercado, Bertrand Ottino-Loffler, David Sell, Benjamin Suslick, Jordan Theriot, Ryan Thorngren, and Matthew Voss.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Biology, With a Beat

This term, students in Biology 1—Principles of Biology—were offered a novel alternative to the traditional final exam: the opportunity to create a two-to-four-minute video explaining some aspect of biology in an interesting, entertaining and, yes, musical way.

Bi 1 is a large lecture course for nonmajors and, for most of them, as close as they will come to biology during their undergraduate career. As the class's instructor, Dianne Newman, professor of biology and geobiology, explains, "It's almost an absurd challenge. How do you teach biology in a substantive and engaging way in 10 weeks to students whose primary interests lie elsewhere?"

Newman found at least one way to meet that challenge. "I have a mid-session break in my class because it's an hour and a half long," says Newman. "After 45 minutes, I show a short video that relates to the content of my lecture just to break things up, to give students a chance to stretch and reengage." One day in April, Professor Newman showed a rap video on Hox gene development created by Stanford students. "The Hox genes are regulatory genes in eukaryotes that are critical for development," says Newman. "It was such a clever video. And so, off the cuff, I said to my Bi 1 students, 'These Stanford kids are pretty good. If any of you can come up with something equally outstanding, I'll give you an automatic A in the class.'"

After class, to Newman's surprise, a student came up to ask exactly what the rules were for this automatic A. If they did a video, could they skip the midterm? Could they skip the final? What about the assignment requiring students to write a hypothesis-driven paper on a topic of their choice? Disarmed, Newman promised she would soon send the class an email that would explain it all. She reflected on the idea and then laid out the rules for the Bi 1 video challenge: an automatic A on just the final exam, but only if the video adhered to a stringent set of rules regarding originality, scientific content, and aesthetic value.

Newman was skeptical anyone would take on the challenge, but in the end, six videos were submitted. All were screened on June 4, the last day of class. All of the students in the class were given clickers to vote on each video—giving it an A, B, or C, based on how well the video fulfilled the criteria. Newman promised to take their votes into consideration as she made her decisions about the adequacy of each video. Newman further enlisted some special A-list guests to attend the showing and give their reactions: Harry Gray, the Arnold O. Beckman Professor of Chemistry and founding director of the Beckman Institute; Jonas Peters, the Bren Professor of Chemistry; Cindy Weinstein, vice provost and professor of English; and Bil Clemons, professor of biochemistry. As an added surprise to the students, President Thomas Rosenbaum stopped in for the viewing.

Student videos covered a range of topics, from photosynthesis to metabolism to respiration, and employed a variety of styles, with each video showcasing the unique personalities and creative talents of their creators. Tyler Perez (freshman, planetary science) and Nicholas Meyer (freshman, physics), for example, created a video titled "A Rap about GFP" (GFP, or green fluorescent protein, is used as a marker to visualize protein localization and gene expression). Perez notes that the main challenge was not having a dedicated cameraman, creating the need for "planning the shots beforehand, setting up the tripod, running to the scene to do the acting/dubbing, running back to check the shot, move the camera, repeat."

Rachael Morton (freshman, computer science) and Roohi Dalal (freshman, physics and history) described details about the nuclei of differentiated cells to the tune of Taylor Swift's "Blank Space" in a video they called "Enucleated Space." Morton recalls spending "a few interesting afternoons walking around campus in formal wear, lugging around cameras while lip syncing, as confused-looking tour groups and classmates passed by."

Ashwin Balakrishna (freshman, electrical engineering) and Kelly Woo (freshman, electrical engineering) collaborated on "Photosynthesis," rapping out lyrics like "ATP synthase she the center of it all/I got H+ gradient and now it comes into call" (inspired by Drake's rap video for "Energy"). Woo says, "As corny as this sounds, shooting this video really allowed me to slow down and appreciate how beautiful our campus is."

This may sound like a lot of fun and only a little science, but the Caltech faculty reviewers were impressed. "I'm a little prouder to be a professor at Caltech today," Peters said.

Harry Gray, after viewing the video on respiration created by Ashwin Hari (freshman, computer science) and Hanzhi Lin (freshman, computer science), humorously noted, "I've been studying respiration for a long time, but I learned more in this video than I have in 30 years. I hope you guys will make a lot more videos. I'm going to come to all of them so I don't have to spend all that time reading stupid journals."
 

While reviewing freshman Tara Shankar's (freshman, computer science) video, "Metabolism, Let's Break it Down," Jonas Peters tried to recruit the computer science major to chemistry. He even offered a powerful incentive: "If Professor Newman doesn't give you an A on the final for this video, you can take any course in CCE [the Division of Chemistry and Chemical Engineering], and we will give you an A."

After the last video was shown, Peters, on a more serious note, drew students' attention to all the opportunities that they—as nonmajors in biology—could bring to biology from their very different "corners of the campus."

"Professor Newman's enthusiasm for the class was mirrored by the joie de vivre of the students, who sang, danced, and rapped their way through the central themes of Bi 1," says Weinstein. "Seeing students bring such intelligence, creativity, and downright fun to their studies reminds us of the rewards that come to teachers who inspire."

So did these students earn their prize, the opportunity to spend another afternoon singing and dancing their way across campus while their fellow Bi 1 students grind out their final? The jury—a one-woman jury named Dianne Newman—is still out, but it looks as though the Bi 1 video challenge will be finding its way onto her next Bi 1 syllabus.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Mike Brown's "Living Textbook"

Feynman Teaching Award winner Mike Brown ventures into new fields of instruction: the Massive Open Online Course, or MOOC, and the "flipped" classroom, which inverts the traditional arrangement of listening to lectures in class and doing assignments at home.

Mike Brown, the Richard and Barbara Rosenberg Professor and Professor of Planetary Astronomy, is teaching a nine-week course to 20 Caltech undergraduates—and some 2,000 Internet users. Geology/Astronomy 11c, "Introduction to Earth and Planetary Sciences: Planetary Sciences," is also available on line at Coursera.org as "The Science of the Solar System."

"It's pretty amazing," says Brown. In one sitting, I teach more students than I would in my entire career at Caltech."

The course's videos are grouped into four multiweek units that cover the history of water on Mars, the interiors of the giant planets, the formation of the solar system as recorded in the rubble of small bodies left behind, and the search for life beyond Earth. Every lecture demonstrates how planetary science draws on techniques from an assortment of disciplines to attack a problem. For example, he describes how in 1966 Caltech physics professor Robert Leighton (BS '41, MS '44, PhD '47) and planetary science professor Bruce Murray used basic physics to conclude that Mars's polar caps could not be ordinary ice, as had generally been assumed, but must instead be dry ice—frozen carbon dioxide. The unit as a whole traces the history of both the planet and our quest to understand it, from our first telescopic observations to our current fleet of spacecraft. The lectures are sprinkled with personal asides, such as the fact that the very first front-page color photograph to run in Brown's hometown newspaper was of the rusty, rock-strewn desert of Mars's Chryse Planitia, beamed back from the Viking One lander on July 21, 1976.

The for-credit version taken by Caltech undergraduates is a "flipped" class. Students watch the lectures on their own time, and the instructional sessions are devoted to personal interactions with one another and with Brown. After he fields questions on the week's lectures, the students break up into small groups. For the Mars unit, each group was provided the location of one of the backup landing sites selected for Curiosity, the Mars Science Laboratory rover, and told to write a report on the site's geologic history based on the wealth of data and images available online. The reports were to pay special attention to the times and forms in which water might have been present at the sites. Each group then had to make the case for its site as the best choice in a presentation to the entire class.

"The goal is to have them synthesize the individual things they learned from the lectures and apply it to spots that we didn't necessarily talk about," Brown says. "I told them to organize their thinking by just looking at the lectures' titles. There's photogeology, where you compare pictures to landforms on Earth to see what's going on. There are outflow channels, dendritic channels, valley networks. There's the altimetry, which tells you about slopes and drainages. You can look at the gamma-ray data to see if there's subsurface water. And the infrared spectroscopy tells you about the mineralogy, which tells you whether water was present when that rock was laid down. You can apply almost everything that was in the lectures to each of these sites."

After the groups have split up, Brown works the room, listening to the students' discussions and occasionally asking a question. As one group begins pooling what they've gleaned from their individual readings about their site, a student says he doesn't see any evidence for what one paper claims to be an ancient shoreline. Brown remarks, "Just because a paper's been published doesn't mean it's right. How do you decide if a conclusion is credible?" Another student replies, "By how often it's cited?" "That's a good way," Brown agrees. "And it's very easy to do that these days. When I was a student, we had to haul out all these big, thick books. Of course, if all the citations say, 'This is the most idiotic thing I've ever read,' that would be bad." As the period proceeds, the discussion gets more detailed, and Brown's questions become more penetrating. "I'm going to disagree with everything you say to be sure you have the evidence for it," he explains to them. "If I don't ask these questions, NASA will."

This is the second year that Brown has flipped this class. "I'm still learning how it works," he says. When he created the course last year, he recalls, "I spent a lot of time recording. It was a full-time job from January to mid-May, which is crazy for a nine-week class. But the promise was that it all pays off in the subsequent years. Some parts didn't work so well, so I've had to change them, and some parts change because there are always new things happening in space. This time around, I got to put in all the stuff about landing on a comet [i.e., the European Space Agency's Rosetta mission, which landed a probe on comet 67P/Churyumov-Gerasimenko last November], which is super cool, and next year I'll get to do the Pluto flyby stuff [NASA's New Horizons mission, set to flyby the dwarf planet on July 14 of this year]. I think of it as a living textbook."

It took some 45 minutes to record one 15-minute lecture, of which there are about 90. Editing each segment took another two hours. "That was a surprise," Brown says. "At first, I was doing them all myself, but I very quickly cried uncle and sent them over to Leslie [Maxfield (BS '95), Caltech's director of Academic Media Technologies (AMT)]. They did a much better job. This year, with the re-recordings, there's not as much to do, so I'm doing them all myself."

Brown records all the videos in his office using the built-in camera on his computer monitor. In the middle of the room, a portable green-screen backdrop on long-term loan from AMT hangs from borrowed light stands. Hanging next to the screen is the lone blue shirt that Brown wears for continuity. He's perpetually clean-shaven now for the same reason, and he gets the same haircut, on schedule, every eight weeks. "My wife is thrilled," he says. "I used to say, 'Oh, yeah. My hair is 10 feet long; I should get a haircut.' Now she says, 'You're getting another haircut already?'"

Caltech students get nine units of credit for completing the course; people from the outside world get a certificate of completion "good for printing out and hanging on your wall," Brown says. "And as totally meaningless as these certificates are, people are very motivated by them. They're enjoying the class, they're trying to learn, and they want that certificate. I'm very excited about this class because it's the best outreach tool I've ever found, in a very interesting niche where we don't normally do outreach. This is intense—2,000 people spending nine weeks doing three or four hours a week of planetary science. That's crazy. And they were an engaged, dedicated group by the end. They feel a big sense of allegiance to all aspects of it: to me, to Caltech, and I think to Coursera as well. It's a pretty great tool."

Writer: 
Douglas Smith
Frontpage Title: 
Mike Brown's "Living Textbook"
Listing Title: 
Mike Brown's "Living Textbook"
Writer: 
Exclude from News Hub: 
No
Short Title: 
Mike Brown's "Living Textbook"
News Type: 
In Our Community
Tuesday, May 26, 2015 to Friday, May 29, 2015
Center for Student Services 360 (Workshop Space) – Center for Student Services

CTLO Presents Ed Talk Week 2015

Monday, May 18, 2015
Brown Gymnasium – Scott Brown Gymnasium

Jupiter’s Grand Attack

Pages

Subscribe to RSS - education