A New View into Cardiovascular Disease

About a third of American adults suffer from cardiovascular diseases, which are the underlying cause of about one in three deaths in the U.S. In 2010, cardiovascular diseases generated direct and indirect costs of approximately $503 billion. New techniques to detect these diseases early and provide ongoing health information could significantly reduce such unacceptable human and financial costs. Such new techniques are in development with support from the Caltech Innovation Initiative, a philanthropically funded internal grant program designed to provide research funds to high-risk but potentially high-reward projects that could produce disruptive technologies with practical applications in the marketplace.

Caltech's Mory Gharib—a professor of aeronautics and bioinspired engineering, and an expert in cardiac mechanics and bioinspired medical devices—is developing a new method and device for easy, low-cost, and early diagnosis of cardiovascular diseases.

Clinicians could gain a wealth of information by analyzing the waveform of the patient's arterial pulse if they could retrieve the information easily enough. But current approaches to this analysis require simultaneous measurement of pressure and flow waves in the same location, which would be difficult if not impossible in clinical settings.

In the second year of a Caltech Innovation Initiative grant, the Gharib group is conceiving a new way to collect this information through noninvasive measurements that medical staff or patients themselves could easily perform. The technology extracts information by using anatomical knowledge and new methods in applied mathematics to extrapolate from intrinsic frequencies observed in arterial pressure waves or in wall displacement. Only a single waveform is needed, representing either pressure or flow—the two no longer need to be measured simultaneously in order to access the rich information they can provide.

For the first time, patients could have an easy, low-cost way to get information on the health of their hearts and arteries.

Writer: 
Exclude from News Hub: 
Yes

Materials that Change on Demand

The discovery of new materials with novel properties often spurs leaps in science and technology. One of the most promising advances under way now is the creation of "tunable" materials. Caltech aerospace engineer Dennis Kochmann, who works on the modeling and fabrication of novel materials, is using Caltech Innovation Initiative support to design materials whose performance can be altered on demand. The Caltech Innovation Initiative, a philanthropically funded internal grant program, is designed to provide research funds to high-risk but potentially high-reward projects that could produce disruptive technologies with practical applications in the marketplace.

Kochmann started where many research groups are now — focusing on composite materials that change when you add or remove heat. Engineers are designing composites in which a stiff matrix holds phase-transforming inclusions. When an outside force acts to change their phase, the change in the inclusions can change the host material's properties. By using temperature to trigger phase transformation in a tin-barium-titanate composite, Kochmann found that he could increase the material's stiffness and damping (its ability to absorb and attenuate vibration) by orders of magnitude. But he saw that the precise temperature requirements of thermally tunable materials rendered them useless for most practical purposes. So he took a new approach.  

With Caltech Innovation Initiative seed-funding, Kochmann is working to design, fabricate, and test new types of composites with specially designed inclusions that change phase at the push of a button — through application of an electric field rather than changes in temperature. In particular, he wants to create stiff, structural materials that absorb vibration well. The rare combination of high stiffness and high damping would open new possibilities in engineering and science.

Kochmann's new idea could enable many possible outcomes, such as machine beds that isolate lab or factory equipment from vibration, strong and stable aircraft wings, and buildings that better withstand earthquakes.

Tags: 
Writer: 
Exclude from News Hub: 
Yes

From Lab-on-a-Chip to Lab-in-the-Body: The Role of Nanotechnology in the Miniaturization of Medical Diagnostic Tools

Watson Lecture Preview

Fictional inventor Wayne Szalinsky built a shrink ray while wearing a Caltech hoodie in the film Honey, I Shrunk the Kids. And a shrunken sub and its five-person crew cleared a blood clot deep inside someone's brain in Fantastic Voyage. Now Axel Scherer, Caltech's Bernard Neches Professor of Electrical Engineering, Applied Physics and Physics, is miniaturizing medical equipment without benefit of a shrink ray. He'll tell us how to make a sensor small enough to be injected into an artery at 8 p.m. on Wednesday, November 6, in Caltech's Beckman Auditorium. Admission is free.

 

Q: What do you do?

A: There's a fantastic scene in Star Trek: The Next Generation where a silicon-based life form calls Captain Picard "you ugly bag of mostly water," which is a really bad insult. But it's true—we are bags of skin containing mostly water, and if we know what's in the water, we can tell whether we're going to be sick. Most health care today is after the fact, which is very inefficient. Your body reacts to some problem—you run a fever or feel dizzy, or whatever—and if it doesn't go away, you go to the emergency room, and someone tries to figure out what's happened. 

So, our goal is to build tiny chemical laboratories that will function inside the body and allow you to know there's a problem before you get symptoms, and you can seek treatment before the damage is done. For example, we work with Eric Topol, a cardiologist at the Scripps Research Institute, who has developed a test that will give you two or three days' warning that you're going to suffer a heart attack. 

Building something small enough to inject is the easy part. In order to sample the water in your bag, we have to evade your natural defenses. The human body assumes that anything it can't recognize must be bad, so it seals that thing off to protect you. That's how we deal with splinters, for example. And the blood stream has all sorts of cells whose entire function is to isolate and destroy foreign objects, so anything we want to introduce into the body we have to somehow camouflage or else build it small enough that it can't be recognized by the immune system.  

 

Q: Why are you doing this? 

A: The world needs cheap, readily available health care. Traditionally, every new medical technology increases the cost of care, so the PCR thermal cycling apparatus that Eric would use for molecular diagnostics in a hospital setting and my DVD player are both rather complicated, but I can get a DVD player for $49.95, and medical instruments are $49,000. We need to figure out how to make them inexpensively the same way we do for consumer electronics. This is something I think can be done as a cottage industry in a university environment. A few people working together can build a device, and if it works for a single person, or maybe a couple of hundred, then you just feed it into the manufacturing system. I see the implantable devices we want to build as a step along a continuum of more and more capable point-of-care instruments that will ultimately move the point of care out of the hospital to wherever the patient is. 

 

Q: How did you get into this line of work? 

A: I came to Caltech from Bell Labs in 1993, and since then, my lab has miniaturized things like communications systems, optical spectroscopic systems, and microfluidic systems. And then one day I asked myself, "What do I really want to do with my miniaturization capabilities?" Also, this academic year Caltech has started a new option in medical engineering. The idea is to harness our engineering capabilities by starting with a medical problem, or set of problems, and working backward to design fundamentally new solutions rather than trying to adapt things that were designed for other purposes. The Institute is saying, "This is something society needs, and we're going to educate the people who will be doing this for the next 30 or 40 years." It's a fantastic opportunity to be relevant in health care without opening a medical school. 

 

Named for the late Caltech professor Earnest C. Watson, who founded the series in 1922, the Watson Lectures present Caltech and JPL researchers describing their work to the public. Many past Watson Lectures are available online at Caltech's iTunes U site.

Writer: 
Douglas Smith
Frontpage Title: 
Watson Lecture: The Role of Nanotechnology in the Miniaturization of Medical Diagnostic Tools
Listing Title: 
Watson Lecture: The Role of Nanotechnology in the Miniaturization of Medical Diagnostic To
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

A New Device to Advance Glaucoma Research and Treatment

Glaucoma, the leading cause of blindness, affects some 70 million people, including four million Americans. As Americans age, the problem is expected to worsen in the U.S. There's stronger hope of progress in the fight against glaucoma, thanks to funding from the Caltech Innovation Initiative, a philanthropically funded internal grant program designed to provide research funds to high-risk but potentially high-reward projects that could produce disruptive technologies with practical applications in the marketplace. With Caltech Innovation Initiative seed funds, Caltech electrical engineer Hyuck Choo is developing a device that could accelerate progress on glaucoma research in addition to helping patients monitor their own optical health.

The key research and clinical tool for glaucoma is intraocular pressure (IOP) monitoring. But presently available IOP monitoring technologies are so cumbersome and limited that researchers studying animal models have to use anesthesia and extreme care to achieve acceptable accuracies, and patients can only get periodic snapshots of their pressure at their doctor's office. So far, most approaches to this problem have focused on development of microelectronic implantable sensors, but the sensors are too big for more than 90 percent of the animal species used in glaucoma research. Glaucoma patients themselves may object to such large sensors (1–3 mm in diameter) because of their visibility and interference with eye function.

Choo has pioneered a new approach, using precise nanophotonic engineering to create an implantable IOP monitoring system 10 to 30 times smaller than previously used sensors. In the first year of Caltech Innovation Initiative support, his group has completed the first device simulations and designs, developed a fabrication process, and begun fabrication. They have also built a measurement setup and obtained initial measurements that correspond with their expectations.

Writer: 
Exclude from News Hub: 
Yes
Tuesday, December 10, 2013
Noyes 153 (J. Holmes Sturdivant Lecture Hall)

Advice for Future New Faculty: Caltech Postdoc Association Event

Friday, January 10, 2014
Center for Student Services 360 (Workshop Space)

Undergraduate Teaching Assistant Orientation

Caltech Names Thomas F. Rosenbaum as New President

To: The Caltech Community

From: Fiona Harrison, Benjamin M. Rosen Professor of Physics and Astronomy, and Chair, Faculty Search Committee; and David Lee, Chair, Board of Trustees, and Chair, Trustee Selection Committee

Today it is our great privilege to announce the appointment of Thomas F. Rosenbaum as the ninth president of the California Institute of Technology.

Dr. Rosenbaum, 58, is currently the John T. Wilson Distinguished Service Professor of Physics at the University of Chicago, where he has served as the university's provost for the past seven years. As a distinguished physicist and expert on condensed matter physics, Dr. Rosenbaum has explored the quantum mechanical nature of materials, making major contributions to the understanding of matter near absolute zero, where such quantum mechanical effects dominate. His experiments in quantum phase transitions in matter are recognized as having played a key role in placing these transitions on a theoretical level equivalent to that which has been developed for classical systems.

But Dr. Rosenbaum's scientific achievements were not solely what captured and held the attention of those involved in the presidential search. We on the search committee were impressed by Dr. Rosenbaum's deep dedication, as Chicago's provost, to both undergraduate and graduate education—both critical parts of Caltech's mission. He has had responsibility for an unusually broad range of institutions and intellectual endeavors. Among his achievements as provost was the establishment of the Institute for Molecular Engineering in 2011, the University of Chicago's very first engineering program, in collaboration with Argonne National Lab.

We also believe that Dr. Rosenbaum's focus on strengthening the intellectual ties between the University of Chicago and Argonne National Lab will serve him well in furthering the Caltech-JPL relationship.

As provost, Dr. Rosenbaum was also instrumental in establishing collaborative educational programs serving communities around Chicago's Hyde Park campus, including the university's founding of a four-campus charter school that was originally designed to further fundamental research in education but which has also achieved extraordinary college placement results for disadvantaged Chicago youths.

This successful conclusion to our eight-month presidential search was result of the hard work of the nine-member Faculty Search Committee, chaired by Fiona Harrison, and the 10-member Trustee Selection Committee, chaired by David Lee. We are grateful both to the trustees and faculty on our two committees who made our job so very easy as well as to those faculty, students, staff, and alumni who provided us with input and wisdom as we scoured the country for just the right person for our Caltech.

"Tom embodies all the qualities the faculty committee hoped to find in our next president," Harrison says. "He is a first-rate scholar and someone who understands at a deep level the commitment to fundamental inquiry that characterizes Caltech. He is also the kind of ambitious leader who will develop the faculty's ideas into the sorts of innovative ventures that will maintain Caltech's position of prominence in the next generation of science and technology."

"The combination of deep management experience and visionary leadership Tom brings will serve Caltech extremely well in the coming years," Lee adds. "The Board is excited about collaborating closely with Tom to propel the Institute to new levels of scientific leadership."

"The Caltech community's palpable and deep commitment to the Institute came through in all my conversations, and it forms the basis for Caltech's and JPL's lasting impact," Dr. Rosenbaum says. "It will be a privilege to work closely with faculty, students, staff, and trustees to explore new opportunities, building on Caltech's storied accomplishments."

Dr. Rosenbaum received his bachelor's degree in physics with honors from Harvard University in 1977, and both an MA and PhD in physics from Princeton University in 1979 and 1982, respectively. He did research at Bell Laboratories and at IBM Watson Research Center before joining the University of Chicago's faculty in 1983. Dr. Rosenbaum directed the university's Materials Research Laboratory from 1991 to 1994 and its interdisciplinary James Franck Institute from 1995 to 2001 before serving as vice president for research and for Argonne National Laboratory from 2002 to 2006. He was named the university's provost in 2007. His honors include an Alfred P. Sloan Research Fellowship, a Presidential Young Investigator Award, and the William McMillan Award for "outstanding contributions to condensed matter physics." Dr. Rosenbaum is an elected fellow of the American Physical Society, the American Association for the Advancement of Science, and the American Academy of Arts and Sciences.

Joining the Caltech faculty will be Dr. Rosenbaum's spouse, Katherine T. Faber, the Walter P. Murphy Professor of Materials Science and Engineering at Northwestern University. Dr. Faber's research focuses on understanding stress fractures in ceramics, as well as on the fabrication of ceramic materials with controlled porosity, which are important as thermal and environmental barrier coatings for engine components. Dr. Faber is also the codirector of the Northwestern University-Art Institute of Chicago Center for Scientific Studies in the Arts (NU-ACCESS), which employs advanced materials science techniques for art history and restoration. Dr. Rosenbaum and Dr. Faber have two sons, Daniel, who graduated from the University of Chicago in 2012, and Michael, who is currently a junior there.

Dr. Rosenbaum will succeed Jean-Lou Chameau, who served the Institute from 2006 to 2013, and will take over the helm from interim president and provost Ed Stolper on July 1, 2014. The board, the search committee, and, indeed, the entire Institute owes Dr. Stolper a debt of gratitude for his unwavering commitment to Caltech, and for seamlessly continuing the Institute's forward momentum through his interim presidency.

As you meet Dr. Rosenbaum today and over the coming months, and learn more about his vision for Caltech's future, we believe that you will quickly come to see why he is so well suited to guide Caltech as we continue to pursue bold investigations in science and engineering, to ready the next generation of scientific and thought leaders, and to benefit humankind through research that is integrated with education.

Exclude from News Hub: 
No
News Type: 
In Our Community

Caltech Students Arrive at Solar Decathlon 2013

DALE is nearly ready to face the judges. The Dynamic Augmented Living Environment, Caltech's collaboration with the Southern California Institute of Architecture (SCI-Arc) is now on-site at the Department of Energy's 2013 Solar Decathlon competition site in Irvine, California.

The SCI-Arc/Caltech team has been planning DALE, its unique and completely solar-powered home, since its competition proposal was accepted in January 2012, along with proposals from 19 other American and international teams. Nearly 40 Caltech students participated in the design process, most of which took place in an engineering project course called Introduction to Multidisciplinary Systems Engineering, and offered during the 2012-2013 academic year. Of the students in this course, taught by Melany Hunt, Dotty and Dick Hayman Professor of Mechanical Engineering and a vice provost, seven stayed on, spending their summer actually building the sustainable house.

Once the majority of construction was complete in late September, the SCI-Arc/Caltech team had to pack up DALE and physically move the entire house from its construction site on the SCI-Arc campus in downtown Los Angeles more than 40 miles south to Orange County Great Park in Irvine, where this year's competition will be held starting on October 3.

While some of DALE's competitors had to employ the use of large cranes to transport their entries or coordinate weeks-long international transportation to the competition site, project manager Andrew Gong (BS '12) says that DALE only spent about three-and-a-half hours in transit. "We picked up DALE with a heavy-duty forklift and placed it on long trucks," Gong says. "And there wasn't any damage other than expected small scrapes to the bottom from the forks."

DALE's design consists of two configurable, box-like modules—one kitchen and bathroom module, and one living and sleeping space module—that can move together or apart. When in the open configuration, DALE's design exploits the ambient outdoor temperature to heat or cool the house, helping to maintain a comfortable temperature within the house without using extra energy for heating and air-conditioning. This moving house was designed with sustainability in mind, but the modules also made it easier for team DALE to truck its house down the interstate to Irvine. "Since the house is composed of modules, it was actually fairly simple to pack up and ship. The main issue was just making sure everything got packed on time," Gong says.

The SCI-Arc/Caltech collaboration is one of 20 teams in the Department of Energy competition, each challenged to design and build affordable, attractive, energy-efficient houses that have the comforts of modern living but are powered only by the sun. As the name "Solar Decathlon" implies, teams will compete for the best total number of points in 10 contests. A panel of experts will use the contests to judge and score the entries based on features ranging from architecture and market appeal to affordability and each house's ability to host a movie night—called the Home Entertainment Contest.

The SCI-Arc/Caltech team wants DALE to score well in the overall competition, but the Caltech team members hope they score especially well in one particular aspect: the Engineering Contest. In this contest, a jury made up of professional engineers will judge each house based on the home's functionality, efficiency, innovation, reliability, and project documentation. "In 2011, with CHIP—our first Solar Decathlon entry—we came in second place. With DALE, we took that second place as a challenge," says Gong, "because now we have to get first, obviously!"

To optimize DALE's energy efficiency, the Caltech members of the team spent months calculating and modeling the home's likely energy usage during the competition. Thirty years of Orange County weather data were used to predict heating and air-conditioning needs for the October competition. "The contests are held on different days of the competition, and we based the energy budget on the contests we will have on a given day: the cooking contest, movie night, heating and air-conditioning test, etc.," Gong says. "With our competition energy budget, we then modeled out the performance required from the solar panels to meet that energy demand," Gong says.

According to their calculations, DALE's oversized solar panels will allow the house to be net-zero during the decathlon—meaning it will produce as much energy as it consumes. And in the future, if the house was used in the longer daylight hours of summer, DALE could produce far more energy than it uses, Gong adds.

The SCI-Arc/Caltech team also designed an energy-saving mobile app for DALE that would allow its owner to monitor the home's real-time energy supply and consumption and take steps to use less energy. "As a team, we are aiming to create a house that is not only energy efficient by itself, but also encourages the inhabitants to live a greener lifestyle," Caltech electrical engineering student Do Hee Kim says on the DALE website. "We have made it simple for homeowners to execute these actions by having the ability to remotely turn on and off home appliances," Kim says.

Visitors will be able to interact with DALE and explore its innovative features during public viewings scheduled for October 3–6 and 10–13 from 11 a.m. to 7 p.m. In addition, visitors arriving at 2:30 will get to see the home reconfigured in real time, a feature that sets DALE apart from the other Solar Decathlon entries. The winners will be announced on October 12, and just a few days later, the team will pack up for the move back to Los Angeles. After the competition, DALE will be displayed at the SCI-Arc campus.

And for any house hunters visiting the competition, the SCI-Arc/Caltech team has good news: DALE is for sale and can be delivered to a new owner. Although the Department of Energy provides a limited amount of seed money for Solar Decathlon teams, fundraising is necessary to cover the actual costs of production; funds from the sale of the home will go to recoup some this year's competition costs and could also help support an entry bid for the 2015 Solar Decathlon.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Caltech Named World's Top University in Times Higher Education Global Ranking

For the third year in a row, the California Institute of Technology has been rated the world's number one university in the Times Higher Education global ranking of the top 200 universities.

Harvard University, Oxford University, Stanford University, and the Massachusetts Institute of Technology round out the top five schools in the 2013–2014 rankings.

Times Higher Education compiled the listing using the same methodology as in the 2011–2012 and 2012–2013 surveys. Thirteen performance indicators representing research (worth 30 percent of a school's overall ranking score), teaching (30 percent), citations (30 percent), international outlook (which includes the total numbers of international students and faculty and the ratio of scholarly papers with international collaborators, 7.5 percent), and industry income (a measure of innovation, 2.5 percent) make up the data. The data were collected, analyzed, and verified by Thomson Reuters.

The Times Higher Education site has the full list of the world's top 400 schools and all of the performance indicators.

Writer: 
Kathy Svitil
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Spirals of Light May Lead to Better Electronics

A group of researchers at the California Institute of Technology (Caltech) has created the optical equivalent of a tuning fork—a device that can help steady the electrical currents needed to power high-end electronics and stabilize the signals of high-quality lasers. The work marks the first time that such a device has been miniaturized to fit on a chip and may pave the way to improvements in high-speed communications, navigation, and remote sensing.

"When you're tuning a piano, a tuning fork gives a standardized pitch, or reference sound frequency; in optical resonators the 'pitch' corresponds to the color, or wavelength, of the light. Our device provides a consistent light frequency that improves both optical and electronic devices when it is used as a reference," says Kerry Vahala, Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics. Vahala is also executive officer for applied physics and materials science and an author on the study describing this new work, published in the journal Nature Communications.

A good tuning fork controls the release of its acoustical energy, ringing just one pitch at a particular sound frequency for a long time; this sustaining property is called the quality factor. Vahala and his colleagues transferred this concept to their optical resonator, focusing on the optical quality factor and other elements that affect frequency stability.

The researchers were able to stabilize the light's frequency by developing a silica glass chip resonator with a specially designed path for the photons in the shape of what is called an Archimedean spiral. "Using this shape allows the longest path in the smallest area on a chip. We knew that if we made the photons travel a longer path, the whole device would become more stable," says Hansuek Lee, a senior researcher in Vahala's lab and lead author on the paper.

Frequency instability stems from energy surges within the optical resonator—which are unavoidable due to the laws of thermodynamics. Because the new resonator has a longer path, the energy changes are diluted, so the power surges are dampened—greatly improving the consistency and quality of the resonator's reference signal, which, in turn, improves the quality of the electronic or optical device.

In the new design, photons are applied to an outer ring of the spiraled resonator with a tiny light-dispensing optic fiber; the photons subsequently travel around four interwoven Archimedean spirals, ultimately closing the path after traveling more than a meter in an area about the size of a quarter—a journey 100 times longer than achieved in previous designs. In combination with the resonator, a special guide for the light was used, losing 100 times less energy than the average chip-based device.

In addition to its use as a frequency reference for lasers, a reference cavity could one day play a role equivalent to that of the ubiquitous quartz crystal in electronics. Most electronics systems use a device called an oscillator to provide power at very precise frequencies. In the past several years, optical-based oscillators—which require optical reference cavities—have become better than electronic oscillators at delivering stable microwave and radio frequencies. While these optical oscillators are currently too large for use in small electronics, there is an effort under way to miniaturize their key subcomponents—like Vahala's chip-based reference cavity.

"A miniaturized optical oscillator will represent a shift in the traditional roles of photonics and electronics. Currently, electronics perform signal processing while photonics rule in transporting information from one place to another over fiber-optic cable. Eventually, oscillators in high-performance electronics systems, while outwardly appearing to be electronic devices, will internally be purely optical," Vahala says.

"The technology that Kerry and his group have introduced opens a new avenue to move precision optical frequency sources out of the lab and onto a compact, robust and integrable silicon-based platform," says Scott Diddams, physicist and project leader at the National Institute of Standards and Technology, recent Moore Distinguished Scholar at Caltech and a coauthor on the study. "It opens up many new and unexplored options for building systems that could have greater impact to 'real-world' applications," Diddams says.

The paper, titled "Spiral resonators for on-chip laser frequency stabilization," was published online in Nature Communications on September 17. Other Caltech coauthors on the study include graduate students Myoung Gyun Suh and Tong Chen (PhD '13), and postdoctoral scholar Jiang Li (PhD '13). The project was in collaboration with Caltech startup company hQphotonics. This work was funded by the Defense Advanced Research Projects Agency; the Caltech's Kavli Nanoscience Institute; and the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation.

Writer: 
Exclude from News Hub: 
No
News Type: 
Research News

Pages

Subscribe to RSS - EAS