Seeing Quantum Motion

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws and principles that appear to explain the physics of relatively large objects at human scale. However, quantum mechanics, the underlying physical rules that govern the fundamental behavior of matter and light at the atomic scale, state that nothing can quite be completely at rest.

For the first time, a team of Caltech researchers and collaborators has found a way to observe—and control—this quantum motion of an object that is large enough to see. Their results are published in the August 27 online issue of the journal Science.

Researchers have known for years that in classical physics, physical objects indeed can be motionless. Drop a ball into a bowl, and it will roll back and forth a few times. Eventually, however, this motion will be overcome by other forces (such as gravity and friction), and the ball will come to a stop at the bottom of the bowl.

"In the past couple of years, my group and a couple of other groups around the world have learned how to cool the motion of a small micrometer-scale object to produce this state at the bottom, or the quantum ground state," says Keith Schwab, a Caltech professor of applied physics, who led the study. "But we know that even at the quantum ground state, at zero-temperature, very small amplitude fluctuations—or noise—remain."

Because this quantum motion, or noise, is theoretically an intrinsic part of the motion of all objects, Schwab and his colleagues designed a device that would allow them to observe this noise and then manipulate it.

The micrometer-scale device consists of a flexible aluminum plate that sits atop a silicon substrate. The plate is coupled to a superconducting electrical circuit as the plate vibrates at a rate of 3.5 million times per second. According to the laws of classical mechanics, the vibrating structures eventually will come to a complete rest if cooled to the ground state.

But that is not what Schwab and his colleagues observed when they actually cooled the spring to the ground state in their experiments. Instead, the residual energy—quantum noise—remained.

"This energy is part of the quantum description of nature—you just can't get it out," says Schwab. "We all know quantum mechanics explains precisely why electrons behave weirdly. Here, we're applying quantum physics to something that is relatively big, a device that you can see under an optical microscope, and we're seeing the quantum effects in a trillion atoms instead of just one."

Because this noisy quantum motion is always present and cannot be removed, it places a fundamental limit on how precisely one can measure the position of an object.

But that limit, Schwab and his colleagues discovered, is not insurmountable. The researchers and collaborators developed a technique to manipulate the inherent quantum noise and found that it is possible to reduce it periodically. Coauthors Aashish Clerk from McGill University and Florian Marquardt from the Max Planck Institute for the Science of Light proposed a novel method to control the quantum noise, which was expected to reduce it periodically. This technique was then implemented on a micron-scale mechanical device in Schwab's low-temperature laboratory at Caltech.

"There are two main variables that describe the noise or movement," Schwab explains. "We showed that we can actually make the fluctuations of one of the variables smaller—at the expense of making the quantum fluctuations of the other variable larger. That is what's called a quantum squeezed state; we squeezed the noise down in one place, but because of the squeezing, the noise has to squirt out in other places. But as long as those more noisy places aren't where you're obtaining a measurement, it doesn't matter."

The ability to control quantum noise could one day be used to improve the precision of very sensitive measurements, such as those obtained by LIGO, the Laser Interferometry Gravitational-wave Observatory, a Caltech-and-MIT-led project searching for signs of gravitational waves, ripples in the fabric of space-time.

"We've been thinking a lot about using these methods to detect gravitational waves from pulsars—incredibly dense stars that are the mass of our sun compressed into a 10 km radius and spin at 10 to 100 times a second," Schwab says. "In the 1970s, Kip Thorne [Caltech's Richard P. Feynman Professor of Theoretical Physics, Emeritus] and others wrote papers saying that these pulsars should be emitting gravity waves that are nearly perfectly periodic, so we're thinking hard about how to use these techniques on a gram-scale object to reduce quantum noise in detectors, thus increasing the sensitivity to pick up on those gravity waves," Schwab says.

In order to do that, the current device would have to be scaled up. "Our work aims to detect quantum mechanics at bigger and bigger scales, and one day, our hope is that this will eventually start touching on something as big as gravitational waves," he says.

These results were published in an article titled, "Quantum squeezing of motion in a mechanical resonator." In addition to Schwab, Clerk, and Marquardt, other coauthors include former graduate student Emma E. Wollman (PhD '15); graduate students Chan U. Lei and Ari J. Weinstein; former postdoctoral scholar Junho Suh; and Andreas Kronwald of Friedrich-Alexander-Universität in Erlangen, Germany. The work was funded by the National Science Foundation (NSF), the Defense Advanced Research Projects Agency, and the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center that also has support from the Gordon and Betty Moore Foundation.

Contact: 
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News

Gharib Addresses Youths at U.S. Citizenship Ceremony

On Wednesday, August 26, 2015, Caltech Vice Provost Mory Gharib welcomed 80 mostly high school-age young people who were at Caltech for a U.S. citizenship ceremony. The ceremony, which was organized by the U.S. Citizenship and Immigration Services and hosted by Caltech, recognized young people who obtained citizenship through their parents.

Gharib, the Hans W. Liepmann Professor of Aeronautics and Professor of Bio-Inspired Engineering, shared with the audience his own story of becoming a naturalized U.S. Citizen. He also talked about the importance of having people from different backgrounds who can bring their own unique perspectives and ideas to a place like Caltech.

"Like this country itself, Caltech is a place where people have come together from many different parts of the globe—on any given day on this campus, you would find students, faculty, and staff from more than 80 countries," Gharib said during his remarks. "We all come together here to find ways to not only to better understand our world, but to make it better."

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Crush, the RoboSub, Places in International Competition

The Caltech Robotics Team—composed of 30 Caltech undergrads and recent alumni—placed fourth in the 18th Annual International RoboSub Competition, held July 20–26 in San Diego, California. The competition, hosted by the Association for Unmanned Vehicle Systems International (AUVSI) Foundation and cosponsored by the U.S. Office of Naval Research, challenges teams of student engineers to perform realistic missions with autonomous underwater vehicles (AUVs) in an underwater environment. Thirty-seven teams from across the globe competed in this year's event.

The challenge was to build a robotic submarine that could autonomously navigate an obstacle course, completing tasks such as driving through a gate, bumping into colored buoys, shooting torpedoes through holes, and dropping markers into designated bins. The only human involvement during the competition was the initial placement of the vehicle into the water.

The Caltech team was divided into three groups, responsible for the mechanical, electrical, and software systems of the robot, which they named Crush. A fourth group managed the team's fund-raising and outreach efforts. The mechanical team, led by Edward Fouad, a senior in mechanical engineering, was responsible for building grippers, a propulsion system, and a pressure hull to house the robot's electronics. The autonomous capabilities of the robot were programmed from scratch by the software team, led by Kushal Agarwal, a junior in computer science. The electrical team, led by Torkom Pailevanian, a senior in electrical engineering, designed an inertial measurement unit consisting of gyroscopes and accelerometers that allow the robot to orient itself in 3-D space.

Started in 1998, the Annual RoboSub Competition is designed to introduce young students into high-tech STEM fields such as maritime robotics. This year's team from Caltech was led by Justin Koch—who graduated in June with his BS in mechanical engineering—and advised by Joel Burdick, the Richard L. and Dorothy M. Hayman Professor of Mechanical Engineering and Bioengineering.

"Last year, as a first-year team, we placed seventh overall and were awarded Best New Entry," says Koch. "I'm definitely very excited with how we did as only a second-year team!"

Writer: 
Lori Dajose
Writer: 
Exclude from News Hub: 
No
Short Title: 
Robotics Team Places in Competition
News Type: 
In Our Community

High School Students Visit for Women in STEM Preview Day

On Friday, August 7, 104 female high school seniors and their families visited Caltech for the fourth annual Women in STEM (WiSTEM) Preview Day, hosted by the undergraduate admissions office. The event was designed to explore the accomplishments and continued contributions of Caltech women in the disciplines of science, technology, engineering, and mathematics (STEM).

The day opened with a keynote address by Marianne Bronner, the Albert Billings Ruddock Professor of Biology and executive officer for neurobiology. Bronner, who studies the development of the central nervous system, spoke about her experiences in science and at Caltech.

"Caltech is an exciting place to be. It's a place where you can be creative and think outside the box," she said. "My advice to you would be to try different things, play around, and do what makes you happy." Bronner ended her address by noting the pleasure she takes in mentoring young scientists, and especially young women. "I was just like you," she said.

Over the course of the day, students and their families attended panels on undergraduate research opportunities and participated in social events where current students shared their experiences of Caltech life. They also listened to presentations from female scientists and engineers of the Jet Propulsion Laboratory.

"I really love science, and it's so exciting to be around all of these other people who share that," says Sydney Feldman, a senior from Maryland. "I switched around my whole summer visit schedule to come to this event and I'm having such a great time."

The annual event began four years ago with the goal of encouraging interest in STEM in high school women and ultimately increasing applications to Caltech by female candidates. In 2009, a U.S. Department of Commerce study showed that women make up 24 percent of the STEM workforce and hold a disproportionately low share of undergraduate degrees in STEM fields.

"Women are seriously underrepresented in these fields," says Caltech admissions counselor and WiSTEM coordinator Abeni Tinubu. "Our event really puts emphasis on how Caltech supports women on campus, and we want to show prospective students that."

This year, the incoming freshman class is a record 47 percent female students. "This is hugely exciting," says Jarrid Whitney, the executive director of admissions and financial aid. "We've been working hard toward our goal of 50 percent women, and it is clearly paying off thanks to the support of President Rosenbaum and the overall Caltech community."

Frontpage Title: 
Women in STEM Preview Day
Listing Title: 
Women in STEM Preview Day
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Two Caltech Professors Named Simons Investigators

Caltech professors Alexei Kitaev and Christopher Umans have been named Simons Investigators. These appointments are given annually to "support outstanding scientists in their most productive years, when they are establishing creative new research directions." Investigators receive $100,000 annually for five years.

Alexei Kitaev, the Ronald and Maxine Linde Professor of Theoretical Physics and Mathematics, studies quantum computation and related areas of theoretical physics. He was recognized for helping to found the field of topological quantum computing, which involves theoretical computing devices that use a type of elementary particle called an anyon to do computations.

"The central idea is to protect quantum information from errors by encoding it in a collective state of many electrons called a 'topological quantum phase,'" Kitaev says. "I proposed a scheme whereby a piece of quantum information is stored in a pair of particles called Majorana modes at the ends of a microscopic wire. This idea has been elaborated by other physicists and is now being tested experimentally."

In 2012, Kitaev received the $3 million Fundamental Physics Prize for his work developing algorithms and theories to enable quantum computing. A member of Caltech's Institute for Quantum Information and Matter, he was named a MacArthur Fellow in 2008.

Chris Umans, a professor of computer science, studies complexity theory, a field that aims to determine rigorously the possibilities and limitations of computation. "Computational complexity attempts to answer the question: 'What is computationally feasible given limited computational resources?'" he says.

Umans was noted by the Simons Foundation for his work on matrix multiplication, a prominent problem that involves the devising of optimal algorithms for multiplying two n-by-n matrices. The citation also noted his development of a "novel algorithm for polynomial factorization."

"The Simons award was a complete surprise! I am honored to be recognized in this way and grateful to the Simons Foundation for their support," he says. "Long-term support like this allows researchers to really focus on difficult, long-term problems, and this is incredibly valuable, especially in these fields that are filled with deep, foundational open questions."

Umans also received an NSF CAREER award in 2004 and an Alfred P. Sloan Research Fellowship in 2005.

The Simons Foundation was founded in 1994 by Jim and Marilyn Simons to advance research in mathematics and the basic sciences. In 2012, the Simons Foundation awarded fellowships to Hirosi Ooguri, the Fred Kavli Professor of Theoretical Physics and Mathematics and Director of Caltech's Walter Burke Institute for Theoretical Physics, and former professor of astrophysics Christopher Hirata (BS '01), now a professor of physics at Ohio State University.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

New EAS Division Chair Announced

Guruswami "Ravi" Ravichandran, the John E. Goode, Jr., Professor of Aerospace and professor of mechanical engineering, and director of the Graduate Aerospace Laboratories (GALCIT), has been selected as the new chair of the Division of Engineering and Applied Science (EAS). On September 1, he will begin his five-year term, taking over the Otis Booth Leadership Chair from current division chair Ares Rosakis, the Theodore von Kármán Professor of Aeronautics and Mechanical Engineering.

He was selected by a search committee chaired by Kerry Vahala, the Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics. The Board of Trustees formally approved the committee's selection at a meeting in late July.

Ravichandran has been at Caltech since joining the faculty as an assistant professor in 1990, and he was named the John E. Goode, Jr., Professor in 2005. He has also served as director of the Graduate Aerospace Laboratories (GALCIT) since 2009. His research group explores the mechanical properties of materials ranging from active materials and biomaterials to metals, bulk metallic glasses, adhesives, and composites. By discovering fundamental insights into the way that materials deform, are damaged, and fail, his group aims to develop new experimental methods for studying these and other phenomena in solid mechanics.

"I believe, based on the evaluation of the search committee and on my own interactions with him, that Ravi not only has the judgment, energy, and vision to lead the division creatively and effectively, but that he will also be an outstanding advocate for the division," said Edward Stolper, Carl and Shirley Larson Provostial Chair and William E. Leonhard Professor of Geology, in an announcement to the EAS faculty. "I personally look forward to working closely with him on behalf of the division and the Institute."

In his new position, Ravichandran says that he will have a responsibility to maintain and promote the identity of EAS while also growing interdisciplinary collaborations with other divisions and JPL. His first priority as division chair, he says, "is to develop a strategic plan and unifying vision for the division that will continue to bring the diverse disciplines in EAS and other divisions together." In that pursuit, he says he looks forward to "learning about the cutting-edge research in various parts of the division, which has made EAS one of the preeminent centers of engineering science and technology."

In addition, Ravichandran says that he hopes to continue many of the initiatives begun by current division chair Rosakis. "Ares has been an outstanding champion of EAS and was responsible for reorganizing the division into departments, which has led to a manageable structure," he says. Specifically, he would like to continue Rosakis's plans for renovating buildings, programs to provide seed funding for early-stage research, and diversity initiatives.

"During my tenure, I would like to see that we attract the best faculty and students to EAS and the Institute who will enable interdisciplinary activities across Caltech and contribute to frontiers of engineering science and technology. I would like to see a more diverse body of students and faculty, who will enrich EAS and the institute, and I would like to see EAS be at the forefront of technological revolution based on our unique ability to drive advances through basic research," he says.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

$100 Million Gift from Gordon and Betty Moore Will Bolster Graduate Fellowships

Trustees Gordon (PhD '54) and Betty Moore have pledged $100 million to Caltech, the second-largest single contribution in the Institute's history. With this gift, they have created a permanent endowment and entrusted the choice of how to direct the funds to the Institute's leadership—providing lasting resources coupled with uncommon freedom.

"Those within the Institute have a much better view of what the highest priorities are than we could have," Intel Corporation cofounder Gordon Moore explains. "We'd rather turn the job of deciding where to use resources over to Caltech than try to dictate it from outside."

Applying the Moores' donation in a way that will strengthen the Institute for generations to come, Caltech's president and provost have decided to dedicate the funds to fellowships for graduate students.

"Gordon and Betty Moore's incredibly generous gift will have a transformative effect on Caltech," says President Thomas F. Rosenbaum, holder of the Institute's Sonja and William Davidow Presidential Chair and professor of physics. "Our ultimate goal is to provide fellowships for every graduate student at Caltech, to free these remarkable young scholars to pursue their interests wherever they may lead, independent of the vicissitudes of federal funding. The fellowships created by the Moores' gift will help make the Institute the destination of choice for the most original and creative scholars, students and faculty members alike."

Further multiplying the impact of the Moores' contribution, the Institute has established a program that will inspire others to contribute as well. The Gordon and Betty Moore Graduate Fellowship Match will provide one additional dollar for every two dollars pledged to endow Institute-wide fellowships. In this way, the Moores' $100 million commitment will increase fellowship support for Caltech by a total of $300 million.

Says Provost Edward M. Stolper, the Carl and Shirley Larson Provostial Chair and William E. Leonhard Professor of Geology: "Investigators across campus work with outstanding graduate students to advance discovery and to train the next generation of teachers and researchers. By supporting these students, the Moore Match will stimulate creativity and excellence in perpetuity all across Caltech. We are grateful to Gordon and Betty for allowing us the flexibility to devote their gift to this crucial priority."

The Moores describe Caltech as a one-of-a-kind institution in its ability to train budding scientists and engineers and conduct high-risk research with world-changing results—and they are committed to helping the Institute maintain that ability far into the future.

"We appreciate being able to support the best science," Gordon Moore says, "and that's something that supporting Caltech lets us do."

The couple's extraordinary philanthropy already has motivated other benefactors to follow their example, notes David L. Lee, chair of the Caltech Board of Trustees.

"The decision that Gordon and Betty made—to give such a remarkable gift, to make it perpetual through an endowment, and to remove any restrictions as to how it can be used—creates a tremendous ripple effect," Lee says. "Others have seen the Moores' confidence in Caltech and have made commitments of their own. We thank the Moores for their leadership."

The Moores consider their gift a high-leverage way of fostering scientific research at a place that is close to their hearts. Before he went on to cofound Intel, Gordon Moore earned a PhD in chemistry from Caltech.

"It's been a long-term association that has served me well," he says.

Joining him in Pasadena just a day after the two were married, Betty Moore became active in the campus community as well. A graduate of San Jose State College's journalism program, she secured a job at the Ford Foundation's new Pasadena headquarters and also made time to come to campus to participate in community activities, including the Chem Wives social club.

"We started out at Caltech," she recalls. "I had a feeling that it was home away from home. It gives you a down-home feeling when you're young and just taking off from family. You need that connection somehow."

After earning his PhD from Caltech in 1954, Gordon Moore took a position conducting basic research at the Applied Physics Laboratory at Johns Hopkins University. Fourteen years and two jobs later, he and his colleague Robert Noyce cofounded Intel Corp. Moore served as executive vice president of the company until 1975, when he took the helm. Under his leadership—as chief executive officer (1975 to 1987) and chairman of the board (1987 to 1997)—Intel grew from a Mountain View-based startup to a giant of Silicon Valley, worth more than $140 billion today.

Moore is widely known for "Moore's Law," his 1965 prediction that the number of transistors that can fit on a chip would double every year. Still relevant 50 years later, this principle pushed Moore and his company—and the tech industry as a whole—to produce continually more powerful and cheaper semiconductor chips.

Gordon Moore joined the Caltech Board of Trustees in 1983 and served as chair from 1993 to 2000. That same year, he and his wife established the Gordon and Betty Moore Foundation, an organization dedicated to creating positive outcomes for future generations in the San Francisco Bay Area and around the world.

Among numerous other honors, Gordon Moore is a member of the National Academy of Engineering, a fellow of the Institute of Electrical and Electronics Engineers, and a recipient of the National Medal of Technology and the Presidential Medal of Freedom. 

The Gordon and Betty Moore Graduate Fellowship Match is available for new gifts and pledges to endow graduate fellowships. For more information about the match and how to support graduate education at Caltech, please contact Jon Paparsenos, executive director of development, at (626) 395-3088 or jpapars@caltech.edu.

Exclude from News Hub: 
No
News Type: 
In Our Community

Clean Water For Nepal

On the steep, tea-covered hillsides of Ilam in eastern Nepal, where 25 percent of households live below the poverty level and electricity is scarce, clean running water is scarcer still. What comes out of the region's centralized distribution systems is unfiltered, untreated, and teeming with nitrates, viruses, and E. coli. Purifying it is the consumer's responsibility.

But wood and yak dung, the only available fuels for boiling water, are precious, and purification tablets impart an unpleasant chlorine taste. The result? During the rainy season, local hospitals overflow with typhoid and gastrointestinal cases, mostly involving children and tainted runoff.

That may change, thanks to a gravity flow and slow-sand filtration system designed by Caltech undergraduates. They represent EWB-Caltech, one of the newest chapters of Engineers Without Borders USA, a nongovernmental organization (NGO) whose mission is to design and implement sustainable engineering projects in underprivileged communities.

Founded in 2012 by Sarah Wright (BS '13, bioengineering), EWB-Caltech already has about 30 members. This summer, a half dozen of the chapter's members are traveling to Ilam, where they are staying with local villagers while helping to oversee and implement the system's construction. The hillside will be partly excavated and then reconstructed. Layers of rock, gravel, sand, polyethylene sheeting, and soil will soak up rainfall, filtering and purifying it as it trickles into underground water. Pipes tapping into the underground water will run downhill to a small communal enclosure made of poured concrete, providing a reliable supply of clean water for about 100 households, with another 200 indirectly affected.

The students will not be working alone, says their mentor, environmental engineering consultant Gordon Treweek (MS '71, PhD '75) who is partnering with Caltech engineering students for the first time. "All EWB projects are community-driven, with the local workforce providing much of the labor. And we've received tremendous logistical support, including interpreters, from the Namsaling Community Development Center, an NGO in Ilam that had previously worked with an EWB chapter from the University of Colorado, Boulder."

According to EWB requirements the Nepalese must contribute 5 percent of the project's budget. EWB-Caltech copresidents Jihoon Lee (a senior in bioengineering) and Nauman Javed (a senior in physics) acknowledge that successfully coming up with the remainder—over $20,000—involved nearly continuous fund-raising. "We've been applying for grants, soliciting private donations, partnering with companies, especially water-related and environmental corporations, and we held a benefit dinner in January that was largely attended by Caltech faculty and friends," says Lee.

Both a 10-day on-site assessment trip last summer and this summer's trip were covered by individual donations and grants. The assessment trip took Treweek, Javed, and fellow Caltech senior Webster Guan (chemical engineering) to Ilam to meet with the NGO; to survey the local community of about 100 families to ascertain their needs and willingness to assist in the construction and ongoing maintenance of the water tap stand; and to gather predesign data for planning construction and estimating costs.

"The support we have received from Caltech alumni directly and through their networks of contacts at Northrop Grumman and Boeing has been invaluable in helping to keep this project moving forward," Treweek says.

After the assessment trip, the students spent the 2014–15 school year preparing detailed engineering documents using computer-aided design techniques. In this, they were assisted by the water-resource engineering firms Carollo Engineers and Montgomery Watson Harza, whose pro bono involvement did not surprise Treweek. "Consulting engineering firms frequently donate resources for projects like this," he says. "It's socially responsible, and it gives them a chance to observe future engineers addressing the four traditional phases of engineering: planning, design, fund-raising, and construction."

With preventable infectious diseases a leading component of Ilam's one-in-three infant mortality rate, the project includes a public-education component. "Besides training the local villagers who will maintain our spring-water source protection system," says Javed, "we plan to visit local schools, demonstrate how the system works, teach a little germ theory."

But no amount of careful planning can guarantee success. Similar projects have failed due to engineering problems, misaligned long-term governance strategies, eleventh-hour reprioritizations by the community, even simple miscommunication. "We've drafted plenty of contingency plans," affirms Lee, "with great support from EWB-USA. Their stringent review procedures covered every engineering and social aspect of the project, and they've given us detailed feedback on our drawings, schedules, and rationales."

After the implementation phase—which ends just one week before classes resume back in Pasadena—EWB-Caltech will continue to monitor the site for five to six years. By then the current members will have moved on and a new group of student leaders will have taken over this project. But for now, they are spending their summer trying to build a better world, drop by drop.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

New VP for Student Affairs Named

Joseph Shepherd (PhD '81), the C. L. "Kelly" Johnson Professor of Aeronautics and professor of mechanical engineering, is leaving his post as dean of graduate studies to succeed Anneila Sargent (MS '67, PhD '78), the Ira S. Bowen Professor of Astronomy, as vice president for student affairs. Shepherd's new role is effective September 15.

Sargent, who served the campus as the leader of student affairs the last eight years, announced in March that she was leaving the post to return to research and teaching full time. Shepherd, who joined the Caltech faculty in 1993, has served the last six years as the dean of graduate studies.

We recently sat down with Shepherd to talk about his past role and his new one, his strengths and goals, and his experience at Caltech.

 

Q: What does the vice president for student affairs do?

A: Student Affairs includes the offices of the undergraduate and graduate deans as well as obvious things like the registrar, undergraduate admissions, fellowships and study abroad, the career center, the health center, and the counseling center. It also includes things you might not think of—athletics; performing and visual arts, which includes the music programs, the theater program, the various arts programs, and all of the faculty and instructors that make these programs possible; and a whole group of organizations lumped under "auxiliaries."

The term "auxiliaries" is misleading, because they're central to student life. Housing and dining are the biggest parts, but there are services like the C-Store, the Red Door Café, the Caltech Store and Wired.

 

Q: What makes this role exciting for you?

A:  People speculate about what it is that makes Caltech a great school. A lot of folks say, "Well, it's because it's so small." But I think it's also because we work with people instead of creating some bureaucratic mechanism to solve problems. We say, "All right, what's the issue here? How can we resolve this?" instead of, "We need to create a rule. And then we need to create a group to enforce the rule." My approach is to ask, "What do we want the outcome to be?" In Student Affairs, you want the outcome to be something that supports the students, supports the faculty, and then you make sure that it's not going to adversely affect the Institute.

 

Q: Are there any changes coming, any initiatives you want to establish?

A: We need to think about how we build on the strengths we have and improve the things that we're weakest at. Before you make any changes to an organization, you need to understand those two things. There are a lot of parts to Student Affairs, so I need to understand the strong points of those organizations, and then get them to help me formulate what's important to do.

You always have to be careful of unintended consequences. As they say in chess, you want to think several moves deep. All right, suppose we do that. What will it mean for different parts of our population? Do we make this choice based on the data we have, or do we need more data? Will there be effects on people we haven't thought about? Maybe we need to go talk to those people.

When you have the authority to change things, you also have the responsibility to ask, "Are these the right changes?" Nothing happens in isolation. Anything you do is invariably going to wind up touching quite a few people.

 

Q: You've been dean of graduate studies since 2009. Did you consider taking a breather before jumping into this?

A: Well, much to my surprise, I found that being the dean of graduate studies was rewarding in many different ways. Sometimes you had to do some difficult things, but I actually liked being the dean. I was able, to some extent, to continue my research. I did some teaching—although last year I taught a major course all three terms, and I had my research group—and I was the dean of graduate studies. That taught me a lesson: a man's got to know his limitations.

So when I was asked if I would take this position, I did think about taking a break and not doing it. I enjoy my research and I enjoy teaching. I enjoy working with students, but I also enjoy trying to help the Institute as a whole. Here at Caltech, we pride ourselves on the notion that we have this very special environment. We have this small school, and we have dedicated professionals that work together with faculty to nurture that environment—having faculty who are invested in participating in the key administrative roles is essential.

When I was a graduate student here, my adviser was Brad Sturtevant [MS '56, PhD '60, and a lifelong faculty member thereafter]. Brad was the executive officer for aeronautics [1972-76]. He was in charge of the committee that built the Sherman Fairchild Library and he was on the faculty board. He emphasized to me that being involved in administration was just as valuable as all the other aspects of being a faculty member. He was a dedicated researcher, but he also felt strongly that you should be a good citizen. You should contribute.

 

Q: It seems like this is more than just a duty to you, though.

A: I'm looking forward to it. I'm also very conscious of the responsibility. I think it's going to be important for us all to think about how we maintain the excellence of the Institute and that we imagine how this place is going to evolve. As society evolves around us, we will naturally wind up changing. We need to do that in a thoughtful way so that we continue to be the special organization that we are.

At the end of the day, I'm counting on help from the faculty and staff. Caltech works because of the committed individuals within our organizations, the personal connections we form as we work together and the cooperation across the campus that these connections enable.  It's a collective enterprise.

I think administration is not something that's done to people. It's being responsible for making sure that folks have the right work environment, the right job assignments, and the right resources. It's making sure we're doing the right things with the finite resources we have. One of our former presidents said something that's always stuck with me: an administrator's goals are not about their own career so much as helping the careers of others. You need to think about how you're helping the people working for you, because they have goals and aspirations. That's where you take your satisfaction.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community
Thursday, September 24, 2015
Beckman Institute, Glanville Courtyard – Beckman Institute

3rd Annual Caltech Teaching Conference: Schedule and RSVP Available Now

Pages

Subscribe to RSS - EAS