Potassium Salt Outperforms Precious Metals As a Catalyst

A team of Caltech chemists has discovered a method for producing a group of silicon-containing organic chemicals without relying on expensive precious metal catalysts. Instead, the new technique uses as a catalyst a cheap, abundant chemical that is commonly found in chemistry labs around the world—potassium tert-butoxide—to help create a host of products ranging from new medicines to advanced materials. And it turns out that the potassium salt is more effective than state-of-the-art precious metal complexes at running very challenging chemical reactions.

"We have shown for the first time that you can efficiently make carbon–silicon bonds with a safe and inexpensive catalyst based on potassium rather than ultrarare precious metals like platinum, palladium, and iridium," says Anton Toutov, a graduate student working in the laboratory of Bob Grubbs, Caltech's Victor and Elizabeth Atkins Professor of Chemistry. "We're very excited because this new method is not only 'greener' and more efficient, but it is also thousands of times less expensive than what's currently out there for making useful chemical building blocks. This is a technology that the chemical industry could readily adopt."

The finding marks one of the first cases in which catalysis—the use of catalysts to make certain reactions occur faster, more readily, or at all—moves away from being a practice that is fundamentally unsustainable. While the precious metals in most catalysts are rare and could eventually run out, potassium is an abundant element on Earth.

The team describes its new "green" chemistry technique in the February 5 issue of the journal Nature. The lead authors on the paper are Toutov and Wen-bo (Boger) Liu, a postdoctoral scholar at Caltech. Toutov recently won the Dow Sustainability Innovation Student Challenge Award (SISCA) grand prize for this work, in a competition held at Caltech's Resnick Sustainability Institute.

"The first time I spoke about this at a conference, people were stunned," says Grubbs, corecipient of the 2005 Nobel Prize in Chemistry. "I added three slides about this chemistry to the end of my talk, and afterward it was all anyone wanted to talk about."

Coauthor Brian Stoltz, professor of chemistry at Caltech, says the reason for this strong response is that while the chemistry the catalyst drives is challenging, potassium tert-butoxide is so seemingly simple. The white, free-flowing powder—similar to common table salt in appearance—provides a straightforward and environmentally friendly way to run a reaction that involves replacing a carbon–hydrogen bond with a carbon–silicon bond to produce molecules known as organosilanes.

These organic molecules are of particular interest because they serve as powerful chemical building blocks for medicinal chemists to use in the creation of new pharmaceuticals. They also hold promise in the development of new materials for use in products such as LCD screens and organic solar cells, could be important in the development of new pesticides, and are being incorporated into novel medical imaging tools.

"To be able to do this type of reaction, which is one of the most-studied problems in the world of chemistry, with potassium tert-butoxide—a material that's not precious-metal based but still catalytically active—was a total shocker," Stoltz says.

The current project got its start a couple of years ago when coauthor Alexey Fedorov—then a postdoctoral scholar in the Grubbs lab (now at ETH Zürich)—was working on a completely different problem. He was trying to break carbon–oxygen bonds in biomass using simple silicon-containing compounds, metals, and potassium tert-butoxide, which is a common additive. During that process, he ran a control experiment—one without a metal catalyst—leaving only potassium tert-butoxide as the reagent. Remarkably, the reaction still worked. And when Toutov—who was working with Fedorov—analyzed the reaction further, he realized that in addition to the expected products, the reaction was making small amounts of organosilanes. This was unexpected since organosilanes are very challenging to produce.

"I thought that was impossible, so I went back and checked it many times," Toutov says. "Sure enough, it checked out!"

Bolstered by the finding, Toutov refined the reaction so that it would create only a single desired organosilane in high yield under mild conditions, with hydrogen gas as the only byproduct. Then he expanded the scope of the reaction to produce industrially useful chemicals such as molecules needed for new materials and derivatives of pharmaceutical substances.

Having demonstrated the broad applicability of the reaction, Toutov teamed up with Liu from Stoltz's group to further develop the chemistry for the synthesis of building blocks relevant to the preparation of new human medicines, a field in which Stoltz has been active for over a decade.

But before delving too deeply into additional applications, the chemists sought the assistance of Nathan Dalleska, director of the Environmental Analysis Center in the Ronald and Maxine Linde Center for Global Environmental Science at Caltech to perform one more test with a mass spectrometer that geologists use to detect extremely minute quantities of metals. They were trying to detect some tiny amount of those precious metals that could be contaminating their experiments—something that might explain why they were getting these seemingly impossible results from potassium tert-butoxide alone.

"But there was nothing there," says Stoltz. "We made our own potassium tert-butoxide and also bought it from various vendors, and yet the chemistry continued to work just the same. We had to really convince ourselves that it was true, that there were no precious metals in there. Eventually, we had to just decide to believe it."

So far, the chemists do not know why the simple catalyst is able to drive these complex reactions. But Stoltz's lab is part of the Center for Selective C–H Functionalization, a National Science Foundation–funded Center for Chemical Innovation that involves 23 research groups from around the country. Through that center, the Caltech team has started working with Ken Houk's computational chemistry group at UCLA to investigate how the chemistry works from a mechanistic standpoint.

"It's pretty clear that it's functioning by a mechanism that is totally different than the way a precious metal would behave," says Stoltz. "That's going to inspire some people, including ourselves hopefully, to think about how to use and harness that reactivity."

Toutov says that unlike some other catalysts that stop working or become sensitive to air or water when scaled up from the single-gram scale, this new catalyst seems to be robust enough to be used at large, industrial scales. To demonstrate the industrial viability of the process, the Caltech team used the method to synthesize nearly 150 grams of a valuable organosilane—the largest amount of this chemical product that has been produced by a single catalytic reaction. The reaction required no solvent, generated hydrogen gas as the only byproduct, and proceeded at 45°C—the lowest reported temperature at which this reaction has successfully run, to date.

"This discovery just shows how little we in fact know about chemistry," says Stoltz. "People constantly try to tell us how mature our field is, but there is so much fundamental chemistry that we still don't understand."

Kerry Betz, an undergraduate student at Caltech, is a coauthor on the paper, "Silylation of C–H bonds in aromatic heterocycles by an Earth-abundant metal catalyst." The work was supported by the National Science Foundation. The Resnick Sustainability Institute at Caltech, Dow Chemical, the Natural Sciences and Engineering Research Council of Canada, and the Shanghai Institute of Organic Chemistry provided graduate and postdoctoral support. Fedorov's work on the original reaction was supported by BP. 

Writer: 
Kimm Fesenmaier
Frontpage Title: 
Abundant Salt Makes High-Performing Catalyst
Listing Title: 
Abundant Salt Makes High-Performing Catalyst
Contact: 
Writer: 
Exclude from News Hub: 
No
Short Title: 
A Greener Catalysis
News Type: 
Research News
Friday, February 13, 2015
Center for Student Services 360 (Workshop Space) – Center for Student Services

Backpocket Barnburner: A Lightning Quick Overview of Educational Theory

Caltech Professors Named Fellows of the AAAS

Caltech Professor of Astronomy George Djorgovski and chemist Bruce Brunschwig are among the 401 newly elected fellows of the American Association for the Advancement of Science (AAAS) for 2014.

The AAAS was formed in 1848 with the mission of "advancing science, engineering, and innovation throughout the world for the benefit of all people." The annual tradition of electing fellows began in 1874 to recognize scientists for their contributions toward this mission.

"The AAAS performs an essential role of promoting and protecting science and its benefits for society. This has never been more important than it is now," says Djorgovski, director of the Center for Data-Driven Discovery at Caltech. He was elected by his scientific peers to the AAAS's Section on Astronomy for his "leadership of the Virtual Observatory and the emerging field of astroinformatics, and considerable body of work on surveys and transient discovery." Astronomical data is exponentially growing in complexity and volume; the Virtual Observatory is an open, web-based research environment intended to organize, maintain, and explore the rich information content within these datasets.

"Science is being transformed by computing and information technology, and astronomy has been at the forefront of these developments," says Djorgovski.

Brunschwig, director of the Molecular Materials Research Center (MMRC) at Caltech, was elected to the AAAS's Section on Chemistry for his "pioneering contributions to the theoretical and physical understanding of electron transfer and its application to artificial photosynthesis." The MMRC is home to state-of-the-art instrumentation that facilitates cutting-edge interdisciplinary research in the fields of chemistry, surface science, and materials science. The center currently hosts myriad projects, including work on artificial photosynthesis and solar energy conversion.

"Bruce Brunschwig is a model for us to aspire to with his dedication to scholarship and his natural curiosity and inquisitiveness," says Brunschwig's colleague Nate Lewis, the George L. Argyros Professor of Chemistry at Caltech and the scientific director of the Joint Center for Artificial Photosynthesis. "His election as a fellow to the AAAS is well deserved."

Caltech is currently home to 42 fellows of the AAAS.

Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community
Saturday, January 24, 2015
Center for Student Services 360 (Workshop Space) – Center for Student Services

The personal side of science

Wednesday, February 4, 2015
Center for Student Services 360 (Workshop Space) – Center for Student Services

Meet the Outreach Guys: James & Julius

Wednesday, February 18, 2015
Center for Student Services 360 (Workshop Space) – Center for Student Services

HALF TIME: A Mid-Quarter Meetup for TAs

How Do You Make a Greasy Protein?

Watson Lecture Preview

Every cell is encapsulated and protected by a thin membrane made of greasy molecules called lipids. Assemblies of equally greasy protein molecules span the membrane, forming passageways that control the flow of signaling molecules that, in turn, direct the cell's activities. Because of these proteins' key role in cell-to-cell communication, they have become a prime target for drug design. Professor of Biochemistry Bil Clemons is among those working out the structures of these proteins and, more fundamentally, the biological processes behind them. Clemons will discuss how cells assemble these proteins, and how they deliver them to the membrane, at 8 p.m. on Wednesday, January 7, in Caltech's Beckman Auditorium. Admission is free.

 

Q: What do you do?

A: I am nominally a structural biologist, but I'm really a crystallographer. We purify a protein in solution and then try to crystallize it, which is really, really hard. When we succeed, we make X-ray diffraction patterns of the crystals and work backwards from those patterns to calculate the precise position of every atom. This allows us to make a blueprint for the molecule, and the blueprint helps us understand how the molecule does what it does. That's my group's real interest—figuring out the biological mechanisms that underlie how a protein works. We want to understand, on a molecular level, the processes by which these proteins are targeted and inserted into the membrane.

Proteins are long chains of amino acids that assume very specific three-dimensional shapes, or conformations. The proteins we work on contain hundreds of amino acids and thousands of individual atoms. These proteins interact with other molecules as they do their jobs. When they do, their conformations change, so a large part of our work is trying to understand all these different interactions and motions.

A crystal contains millions of copies of the same molecule held in exactly one conformation, so in that sense, a crystal structure is just one snapshot of a series of biological motions. Eventually we'd like to make movies of all the conformational changes that occur during these interactions—or at least render the important frames. It's almost like producing a cheap cartoon, where the lead animator draws a few key cels, and the rest is filled in later.

 

Q: What do you get from a crystal structure?

A: We get the first glimpse of how something works. Every crystal structure provides a huge amount of information. The beauty of structural biology is that we get to be the first people to peek under the hood of a protein and draw a three-dimensional map of what we see. Science is vast, and most people work in very narrow fields, doing mechanistic studies and drug discovery and all sorts of things. Structural biologists create the platform for everyone else's studies.

 

Q: How did you get into this line of work?

A: Well, I'd like to say it was a series of happy accidents. I've always been passionate about science. In my heart, I think I was born a scientist. I always wanted to know how everything worked, and biochemistry fascinated me. There was so much complexity—so many ways to ask questions.

At Virginia Tech, I was lucky enough to have an undergraduate adviser, Walt Niehaus, who encouraged me to do research in his group. There was really no looking back after that. I just thought, "Wow. This is really fun. I like doing this." Meanwhile, I was paying my way through school. My senior year I was the student manager of one of the food-service facilities. I was working nearly 40 hours a week managing 40 employees plus spending another 20 hours in the lab and 20 hours in school. I wasn't able to look past that to what my future might be, but Walt pushed me to apply for grad school. It was eye-opening the first time he suggested I could do this for a living.

Walt's research was in basic biochemistry. There weren't any structural biologists at Virginia Tech at the time, but the Howard Hughes Medical Institute sent us a booklet with stereo pictures of protein structures. I thought, "You've got to be kidding me. We can look at these things in 3-D?" It blew my mind. So I went to grad school at the University of Utah to be a crystallographer, and I earned my PhD working on the molecular machinery responsible for making proteins. Then I did my postdoctoral work at Harvard Med, trying to understand the complex process of getting greasy membrane proteins into cell membranes. We solved the structure of an important piece of the puzzle there, and now that I'm at Caltech, which has major strengths in X-ray crystallography, we're filling in the details of the bigger picture.

 

 

Named for the late Caltech professor Earnest C. Watson, who founded the series in 1922, the Watson Lectures present Caltech and JPL researchers describing their work to the public. Many past Watson Lectures are available online at Caltech's iTunes U site.

Writer: 
Douglas Smith
Writer: 
Exclude from News Hub: 
No
News Type: 
Research News
Tuesday, December 2, 2014
Guggenheim 101 (Lees-Kubota Lecture Hall) – Guggenheim Aeronautical Laboratory

PUSD: Annual Open Enrollment

New Center Supports Data-Driven Research

With the advanced capabilities of today's computer technologies, researchers can now collect vast amounts of information with unprecedented speed. However, gathering information is only one half of a scientific discovery, as the data also need to be analyzed and interpreted. A new center on campus aims to hasten such data-driven discoveries by making expertise and advanced computational tools available to Caltech researchers in many disciplines within the sciences and the humanities.

The new Center for Data-Driven Discovery (CD3), which became operational this fall, is a hub for researchers to apply advanced data exploration and analysis tools to their work in fields such as biology, environmental science, physics, astronomy, chemistry, engineering, and the humanities.

The Caltech center will also complement the resources available at JPL's Center for Data Science and Technology, says director of CD3 and professor of astronomy George Djorgovski.

"Bringing together the research, technical expertise, and respective disciplines of the two centers to form this joint initiative creates a wonderful synergy that will allow us opportunities to explore and innovate new capabilities in data-driven science for many of our sponsors," adds Daniel Crichton, director of the Center for Data Science and Technology at JPL.

At the core of the Caltech center are staff members who specialize in both computational methodology and various domains of science, such as biology, chemistry, and physics. Faculty-led research groups from each of Caltech's six divisions and JPL will be able to collaborate with center staff to find new ways to get the most from their research data. Resources at CD3 will range from data storage and cataloguing that meet the highest "housekeeping" standards, to custom data-analysis methods that combine statistics with machine learning—the development of algorithms that can "learn" from data. The staff will also help develop new research projects that could benefit from large amounts of existing data.

"The volume, quality, and complexity of data are growing such that the tools that we used to use—on our desktops or even on serious computing machines—10 years ago are no longer adequate. These are not problems that can be solved by just buying a bigger computer or better software; we need to actually invent new methods that allow us to make discoveries from these data sets," says Djorgovski.

Rather than turning to off-the-shelf data-analysis methods, Caltech researchers can now collaborate with CD3 staff to develop new customized computational methods and tools that are specialized for their unique goals. For example, astronomers like Djorgovski can use data-driven computing in the development of new ways to quickly scan large digital sky surveys for rare or interesting targets, such as distant quasars or new kinds of supernova explosions—targets that can be examined more closely with telescopes, such as those at the W. M. Keck Observatory, he says.

Mary Kennedy, the Allen and Lenabelle Davis Professor of Biology and a coleader of CD3, says that the center will serve as a bridge between the laboratory-science and computer-science communities at Caltech. In addition to matching up Caltech faculty members with the expertise they will need to analyze their data, the center will also minimize the gap between those communities by providing educational opportunities for undergraduate and graduate students.

"Scientific development has moved so quickly that the education of most experimental scientists has not included the techniques one needs to synthesize or mine large data sets efficiently," Kennedy says. "Another way to say this is that 'domain' sciences—biology, engineering, astronomy, geology, chemistry, sociology, etc.—have developed in isolation from theoretical computer science and mathematics aimed at analysis of high-dimensional data. The goal of the new center is to provide a link between the two."

Work in Kennedy's laboratory focuses on understanding what takes place at the molecular level in the brain when neuronal synapses are altered to store information during learning. She says that methods and tools developed at the new center will assist her group in creating computer simulations that can help them understand how synapses are regulated by enzymes during learning.

"The ability to simulate molecular mechanisms in detail and then test predictions of the simulations with experiments will revolutionize our understanding of highly interconnected control mechanisms in cells," she says. "To some, this seems like science fiction, but it won't stay fictional for long. Caltech needs to lead in these endeavors."

Assistant Professor of Biology Mitchell Guttman says that the center will also be an asset to groups like his that are trying to make sense out of big sets of genomic data. "Biology is becoming a big-data science—genome sequences are available at an unprecedented pace. Whereas it took more than $1 billion to sequence the first genome, it now costs less than $1,000," he says. "Making sense of all this data is a challenge, but it is the future of biomedical research."

In his own work, Guttman studies the genetic code of lncRNAs, a new class of gene that he discovered, largely through computational methods like those available at the new center. "I am excited about the new CD3 center because it represents an opportunity to leverage the best ideas and approaches across disciplines to solve a major challenge in our own research," he says.

But the most valuable findings from the center could be those that stem not from a single project, but from the multidisciplinary collaborations that CD3 will enable, Djorgovski says. "To me, the most interesting outcome is to have successful methodology transfers between different fields—for example, to see if a solution developed in astronomy can be used in biology," he says.

In fact, one such crossover method has already been identified, says Matthew Graham, a computational scientist at the center. "One of the challenges in data-rich science is dealing with very heterogeneous data—data of different types from different instruments," says Graham. "Using the experience and the methods we developed in astronomy for the Virtual Observatory, I worked with biologists to develop a smart data-management system for a collection of expression and gene-integration data for genetic lines in zebrafish. We are now starting a project along similar methodology transfer lines with Professor Barbara Wold's group on RNA genomics."

And, through the discovery of more tools and methods like these, "the center could really develop new projects that bridge the boundaries between different traditional fields through new collaborations," Djorgovski says.

Writer: 
Exclude from News Hub: 
No
News Type: 
Research News

Caltech and City of Hope Formalize Collaboration

Caltech and City of Hope have signed a memorandum of understanding, formalizing a relationship that encourages researchers from the two institutions to collaborate and share resources in the interest of furthering both basic scientific research and translational projects—those with a medical application.

"Bringing together Caltech and City of Hope researchers will surely result in transformative science and hopefully also new approaches to medical care," says Jacqueline K. Barton, the Arthur and Marian Hanisch Memorial Professor of Chemistry and chair of the Division of Chemistry and Chemical Engineering at Caltech.

"The complementary nature of this partnership is a natural fit between our two institutions," says David Horne, vice provost and associate director of the Beckman Research Institute at City of Hope. "The translational opportunities in therapeutics and devices have never been greater, and this partnership comes at an opportune time to advance health care in oncology, diabetes, and HIV, which are City of Hope's major focus areas."

As a result of the new agreement, City of Hope researchers will have access to several unique Caltech facilities, including the Molecular Observatory, an X-ray crystallography resource with an automated beamline at the Stanford Synchrotron Radiation Laboratory; the Center for Catalysis and Chemical Synthesis, a synthetic-chemistry center that offers robotic instrumentation for high-throughput screening and analysis of chemical entities; and the Center for the Chemistry of Cellular Signaling, which analyzes the systems of molecules that dictate how cells behave and react to their surroundings.

Likewise, Caltech scientists and engineers will be able to access City of Hope's array of core research services, including resources such as the Pathology Core, a facility that provides access to preserved tumors and normal tissues; the Analytical Pharmacology Core Facility, which conducts pharmacokinetic and pharmacodynamic studies for chemotherapy clinical trials and peer-reviewed preclinical studies; the Animal Tumor Model Core, which creates various cancer models in mice for testing novel experimental therapies; and the Translational Research Laboratory, which helps with the design of clinical trials and basic research studies using samples from clinical trials.

"This is a very timely event, and I see it as building a bridge between Caltech and City of Hope that is natural both in proximity and in the way we complement each other," says Peter Dervan, Caltech's Bren Professor of Chemistry. "Caltech has always been very strong in basic fundamental research. But today, Caltech scientists and engineers are genuinely interested in taking the discoveries that we make in chemistry, biochemistry, biology, and bioengineering to real-world practical applications. City of Hope is a renowned medical research center that is only 20 minutes away and can work with us collaboratively on these translational problems. This is going to be a win-win partnership."

The memorandum establishes the Arthur D. Riggs Distinguished Lectureship series, which will bring scientists from across the country to speak at Caltech and City of Hope on current projects in basic research as well as on efforts to predict, prevent, diagnose, treat, and cure such diseases as cancer, diabetes, and HIV.

The first lecture in that series will be delivered on Wednesday, November 19, by a distinguished molecular biologist who knows both Caltech and City of Hope well: Riggs himself. Riggs completed his doctoral work in biochemistry at Caltech in 1966; at City of Hope, he is now a professor of cancer biology and chair of the Department of Diabetes and Metabolic Diseases Research as well as director emeritus of the Beckman Research Institute at City of Hope.

"We are really excited that Art has agreed to be the kickoff lecturer," says Dervan. "By sharing interest in the lectures, researchers at Caltech and City of Hope will share ideas, and I think at the end of the day we're going to be sharing students—postdoctoral coworkers and graduate students—on collaborative projects."

Riggs's lecture, " Reflections on a Career of Collaboration, Mostly with Caltech," will begin at 4 p.m. in Gates Annex 22 at Caltech and is open to the public.

Writer: 
Kimm Fesenmaier
Contact: 
Writer: 
Exclude from News Hub: 
No
News Type: 
In Our Community

Pages

Subscribe to RSS - CCE