Caltech engineers announce new, more promising type of electrolyte for fuel cells

PASADENA, Calif.—The quest for a cheap and robust fuel cell for future cars may be a bit closer this week to the "grail" moment. Scientists at the California Institute of Technology have announced that they're getting promising results with a new material that solves various limitations of previously tested fuel cells.

In an article published online November 20 by the journal Science on the Science Express Website, associate professor of materials science and chemical engineering Sossina Haile and her colleagues report that they have created a new phosphate-based electrolyte to go inside the fuel cells. The new substance, formally named cesium dihydrogen phosphate is, for a variety of reasons, better than the team's previously favored electrolyte, which was based on a sulfate.

"It's a whole new way of doing fuel cells that opens up tremendous possibilities for system simplification," says Haile, a leading authority on fuel cell technology. Haile's most spectacular results in recent years have been with the "solid acid" electrolytes, such as both the phosphate and the sulfate materials, that ferry current along the fuel cell in a way that minimizes the use of expensive parts that rapidly wear out.

Fuel cells have for some time been promoted as a way to help wean global society away from its addiction to gasoline and internal-combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source, but like a battery, the chemical energy is directly converted to electrical energy, without a messy and inefficient combustion step.

The components in a fuel cell that make this direct electrochemical conversion possible are an electrolyte, a cathode, and an anode. In the simplest example hydrogen fuel is brought into the anode compartment and oxygen is brought into the cathode compartment. There is an overall chemical force driving the oxygen and the hydrogen to react to produce water.

In the fuel cell, however, the direct chemical reaction is prevented by the electrolyte that separates the fuel (H2) from the oxidant (O2). The electrolyte serves as a barrier to gas diffusion, but it will let protons migrate across it. In order for the reaction between hydrogen and oxygen to occur, the hydrogen molecules shed their electrons to become protons. The protons then travel across the electrolyte and react with oxygen atoms at the cathode, where they also pick up electrons to produce neutral water. An additional requirement for these electrochemical reactions to occur is that there be some external path through which the electrons migrate; it is precisely this electron motion that provides usable electricity from the fuel cell.

Traditional fuel cells, which utilize polymer electrolytes, are hampered by a number of problems. The most notable are the cells' inability to operate at high temperatures, their requirement for complicated water regulation systems, and their failure to control fuel diffusion.

Haile and her associates have addressed these shortcomings by creating a novel fuel cell with a solid-acid electrolyte. Solid acids have unique properties that lie between those of normal acids and normal salts. Importantly, solid acids are very efficient at conducting protons when they are heated to "warm" temperatures.

However, their use for any application was largely ignored because they are water-soluble and difficult to fabricate into useful forms. In previous work, Haile explored the applicability of the solid acid CsHSO4 as a fuel cell electrolyte and demonstrated the successful operation of such a fuel cell. She found that the key to creating a functional solid-acid fuel cell is an operation temperature above 100 degrees C, which ensures that water in the system, which would otherwise dissolve and leach away the solid acid, is present as harmless steam.

The CsHSO4 electrolyte fuel cell suffered from a serious problem that prohibited its use for power generation. Specifically, the output of the fuel cell decreased over time as the hydrogen fuel reacted with the solid acid in the presence of the catalyst. As reported in their Science paper, Haile and her colleagues circumvented this problem by replacing the CsHSO4 solid acid with CsH2PO4, which does not react with hydrogen.

According to Haile, they were initially hesitant to use this material because it decomposes via dehydration into a nonuseful salt. However, they found that humidifying the fuel cell anode and cathode chambers with a relatively low level of water vapor could prevent the dehydration reaction and thereby maintain the fuel cell for long-term power generation.

Haile's humidity-stabilized CsH2PO4 fuel cells solve several critical problems that have plagued polymer fuel cell development. First, these solid-acid fuel cells can be operated at higher temperatures than those built with polymer electrolytes, which are limited to temperatures less than 100 degrees C. Operation at "warm" temperatures, 100-–300 degrees C, brings a number of benefits to fuel cell technology. Most directly, catalyst activity is enhanced, resulting in higher-efficiency fuel cells and allowing one to use less of the expensive catalyst.

In addition, the susceptibility of the catalyst to poisoning from carbon monoxide contamination of the fuel decreases. As a consequence, the fuel stream need not be purified as thoroughly as for polymer fuel cells, reducing the overall system complexity. Perhaps most significantly, operation at warm temperatures opens up the possibility of using less-expensive base-metal catalysts, which are not active enough to be considered for low temperature applications.

Additional system simplifications come about from the fact that the radiator necessary for maintaining a fuel cell at about 200 degrees C is much smaller than the one required for maintaining a temperature of about 90 degrees C. This has significant implications for automotive applications. Warm-temperature operation can furthermore be easily integrated with onboard hydrogen-generation systems that produce hydrogen also at warm temperatures. For a polymer electrolyte fuel cell, the hydrogen stream from these generators has to be cooled before it can be introduced into the cell.

Solid-acid fuel cells can be operated in the temperature range of 100–300 degrees C because, unlike polymers, they do not rely on water molecules to transport protons from one side of the membrane to the other. This "dry" proton transport results in additional advantages. In particular, there is no longer a need to remove water that accumulates at the cathode and replenish it at the anode. As a consequence, the overall system is, again, significantly simplified.

In the case of CsH2PO4, a small amount of water partial pressure, equivalent to about 10 percent relative humidity at 100 degrees C, is required in order to prevent dehydration of the material, but no water recirculation is necessary. The dry, solid-acid electrolytes are furthermore much less corrosive than their hydrated, polymer counterparts. This allows for much more flexibility in the choice of materials for the other components of the fuel cell system.

Where solid-acid fuel cells have tremendous advantages over polymer electrolyte fuel cells is in the use of alcohol (e.g., methanol) fuels. Hydrogen "stored" as methanol results in a liquid fuel with a high energy density, which is much easier to transport, store, and carry on board than hydrogen, says Haile. Polymer-based fuel cells do not work well with alcohol fuels because the fuel diffuses across the electrolyte, consuming fuel without generating electrical output. The solid-acid electrolytes are entirely impermeable to methanol, which means very high power outputs are possible—much higher than from polymer fuel cells running on methanol.

While the solid-acid fuel cells solve many of the problems of polymer fuel cells, there are still a few obstacles standing in the way of extensive fuel cell use. A continuing problem of the solid-acid fuel cells is the water solubility of the electrolytes. Haile suggests that clever engineering could circumvent this drawback. However, she plans to solve this problem by developing new solid-acid materials that are water-insoluble.

In developing humidity-stabilizing CsH2PO4 fuel cells, Haile was assisted by the lead author Dane Boysen, a graduate student in materials science; and Tetsuya Uda and Calum Chisholm, both postdoctoral scholars in Haile's lab.

Writer: 
KP
Exclude from News Hub: 
No

Atmospheric scientists still acquire samples the old-fashioned way--by flying up and getting them

PASADENA, Calif.—Just as Ishmael always returned to the high seas for whales after spending time on land, an atmospheric researcher always returns to the air for new data.

All scientific disciplines depend on the direct collection of data on natural phenomena to one extent or another. But atmospheric scientists still find it especially important to do some empirical data-gathering, and the best way to get what they need is by taking up a plane and more or less opening a window.

At the California Institute of Technology, where atmospheric science is a major interest involving researchers in several disciplines, the collection of data is considered important enough to justify the maintenance of a specially equipped plane dedicated to the purpose. In addition to the low-altitude plane, several Caltech researchers who need higher-altitude data are also heavy users of the jet aircraft maintained by NASA for its Airborne Science Program--a longstanding but relatively unsung initiative with aircraft based at the Dryden Flight Research Center in California's Mojave Desert.

"The best thing about using aircraft instead of balloons is that you are assured of getting your instruments back in working order," says Paul Wennberg, professor of atmospheric chemistry and environmental engineering science. Wennberg, whose work has been often cited in policy debates about the human impact on the ozone layer, often relies on the NASA suborbital platforms (i.e., various piloted and drone aircraft operating at mid to high altitudes) to collect his data.

Wennberg's experiments typically ride on the high-flying ER-2, which is a revamped reconnaissance U-2. The plane has room for the pilot only, which means that the experimental equipment has to be hands-free and independent of constant technical attention. Recently, Wennberg's group has made measurements from a reconfigured DC-8 that has room for some 30 passengers, depending on the scientific payload, but the operating ceiling is some tens of thousands of feet lower than that of the ER-2.

"The airplane program has been the king for NASA in terms of discoveries," Wennberg says. "Atmospheric science, and certainly atmospheric chemistry, is still very much an observational field. The discoveries we've made have not been by modeling, but by consistent surprise when we've taken up instruments and collected measurements."

In his field of atmospheric chemistry, Wennberg says the three foundations are laboratory work, synthesis and modeling, and observational data--the latter being still the most important.

"You might have hoped we'd be at the place where we could go to the field as a confirmation of what we did back in the lab or with computer programs, but that's not true. We go to the field and see things we don't understand."

Wennberg sometimes worries about the public perception of the value of the Airborne Science Program because the launching of a conventional jet aircraft is by no means as glamorous or romantic as the blasting off of a rocket from Cape Canaveral. By contrast, his own data-collection would appear to most as bread-and-butter work involving a few tried-and-true jet airplanes.

"If you hear that the program uses 'old technology,' this refers to the planes themselves and not the instruments, which are state-of-the-art," he says. "The platforms may be old, but it's really a vacuous argument to say that the program is in any way old.

"I would argue that the NASA program is a very cost-effective way to go just about anywhere on Earth and get data."

Chris Miller, who is a mission manager for the Airborne Science Program at the Dryden Flight Research Center, can attest to the range and abilities of the DC-8 by merely pointing to his control station behind the pilot's cabin. On his wall are mounted literally dozens of travel stick-ons from places around the world where the DC-8 passengers have done research. Included are mementos from Hong Kong, Singapore, New Zealand, Australia, Japan, Thailand, and Greenland, to name a few.

"In addition to atmospheric chemistry, we also collect data for Earth imaging, oceanography, agriculture, disaster preparedness, and archaeology," says Miller. "There can be anywhere from two or three to 15 experiments on a plane, and each experiment can be one rack of equipment to half a dozen."

Wennberg and colleagues Fred Eisele of the National Center for Atmospheric Research and Rick Flagan, who is McCollum Professor of Chemical Engineering, have developed special instrumentation to ride on the ER-2. One of their new instruments is a selected-ion- chemical ionization mass spectrometer, which is used to study the composition of the atmospheric aerosols and the mechanisms that lead to its production.

Caltech's Nohl Professor and professor of chemical engineering, John Seinfeld, conducts an aircraft program that is a bit more down-to-earth, at least in the literal sense.

Seinfeld is considered perhaps the world's leading authority on atmospheric particles or so-called aerosols--that is, all the stuff in the air like sulfur compounds and various other pollutants not classifiable as a gas. Seinfeld and his associates study primarily atmospheric particles, their size, their composition, their optical properties, their effect on solar radiation, their effect on cloud formation, and ultimately their effect on Earth's climate.

"Professor Rick Flagan and I have been involved for a number of years in an aircraft program largely funded by the Office of Naval Research, and established jointly with the Naval Postgraduate School in Monterey. The joint program was given the acronym CIRPAS," says Seinfeld, explaining that CIRPAS, the Center for Interdisciplinary Remotely Piloted Aircraft Studies, acknowledges the Navy's interest in making certain types of environmental research amenable for drone aircraft like the Predator.

"The Twin Otter is our principal aircraft, and it's very rugged and dependable," he adds. "It's the size of a small commuter aircraft, and it's mind-boggling how much instrumentation we can pack in this relatively small aircraft."

Caltech scientists used the plane in July to study the effects of particles on the marine strata off the California coast, and the plane has also been to the Canary Islands, Japan, Key West, Florida, and other places. In fact, the Twin Otter can essentially be taken anywhere in the world.

One hot area of research these days, pardon the term, is the interaction of particulate pollution with radiation from the sun. This is important for climate research, because, if one looks down from a high-flying jet on a smoggy day, it becomes clear that a lot of sunlight is bouncing back and never reaching the ground. Changing atmospheric conditions therefore affect Earth's heat balance.

"If you change properties of clouds, then you change the climatic conditions on Earth," Seinfeld says. "Clouds are a major component in the planet's energy balance."

Unlike the ER-2, in which instrumentation must be contained in a small space, the Twin Otter can accommodate onboard mass spectrometers and such for onboard direct logging and analysis of data. The data are streamed to the ground in real time, which means that the scientists can sit in the hangar and watch the data come in. Seinfeld himself is one of those on the ground, leaving the two scientist seats in the plane to those whose instruments may require in-flight attention.

"We typically fly below 10,000 feet because the plane is not pressurized. Most of the phenomena we want to study occur below this altitude," he says.

John Eiler, associate professor of geochemistry, is another user of the NASA Airborne Research Program, particularly the air samples returned by the ER-2. Eiler is especially interested these days in the global hydrogen budget, and how a hydrogen-fueled transportation infrastructure could someday impact the environment.

Eiler and Caltech professor of planetary science Yuk Yung, along with lead author Tracey Tromp and several others, issued a paper on the hydrogen economy in June that quickly became one of the most controversial Caltech research projects in recent memory. Using mathematical modeling, the group showed that the inevitable leakage of hydrogen in a hydrogen-fueled economy could impact the ozone layer.

More recently Eiler and another group of collaborators, using samples returned by the ER-2 and subject to mass spectroscopy, have reported further details on how hydrogen could impact the environment. Specifically, they capitalized on the ER-2's high-altitude capabilities to collect air samples in the only region of Earth where's it's simple and straightforward to infer the precise cascade of reactions involving hydrogen and methane.

Though it seems contradictory, the Eiler team's conclusion from stratospheric research was that the hydrogen-eating microbes in soils can take care of at least some of the hydrogen leaked by human activity.

"This study was made possible by data collection," Eiler says. "So it's still the case in atmospheric chemistry that there's no substitute for going up and getting samples."

Writer: 
RT
Writer: 
Exclude from News Hub: 
No

Another Swedish Accolade for Ahmed Zewail

PASADENA, CA -- Ahmed Zewail, already honored with the Nobel Prize in chemistry, has received another accolade. The Linus Pauling Professor of Chemical Physics and professor of physics at Caltech has been named a member of the Royal Swedish Academy of Sciences.

The Royal Academy is the organization that awards the Nobel Prize in physics, chemistry, and economics. Being elected a member of the academy constitutes exclusive recognition of successful research achievements. The academy members are divided into 10 classes; Zewail was elected as a foreign member of Class IV, chemistry. Besides noting his illustrious research career, the academy cited his active contribution to "promoting research and education in the Third World."

"Normally after winning the Nobel Prize, you don't get elected to the academy," says Zewail, "so it was very kind of them to elect me, and I hope we can bring together this and other distinguished academies to promote global science and education."

Zewail, a native of Egypt, is a member of numerous academies and societies, and holds 20 honorary degrees from around the world, including one this year from Lund University in Sweden. Currently his efforts are focused on new research areas at Caltech, and on promoting awareness about the role of science in world peace.

In 2001 he established prizes for excellence in the sciences and humanities for undergraduates at the American University in Cairo (AUC). The award, named after Zewail by AUC in his honor, is intended to recognize graduating AUC students who demonstrate "extraordinary commitment to the pursuit of scientific inquiry and the affirmation of humanistic values."

Zewail was awarded the Nobel Prize in chemistry in 1999 for breakthrough research. Using ultrafast lasers in a novel way, Zewail's research team was able to observe the motion of atoms and record the transition state of a chemical reaction, revealing, as he put it at the time, "the chemical act--the breaking and making of chemical bonds." Prior to this breakthrough, transition states had never before been observed in real time because they happen on the timescale of a millionth of a billionth of a second, or one femtosecond. At the interface of physics and chemistry, Zewail founded the new field of femtochemistry and femtobiology.

The Royal Swedish Academy of Sciences is an independent organization whose overall objective is to foster the sciences, particularly mathematics and the natural sciences. Each year, it awards a number of prizes to deserving scientists, the most famous of which, the Nobel, has been awarded since 1901.

Writer: 
MW
Exclude from News Hub: 
Yes

"Bubbloy" the latest invention from Caltech materials scientists

First there was liquid metal, that wondrous substance from Bill Johnson's materials science lab at Caltech that is now used for golf clubs and tennis rackets. Now a couple of Johnson's enterprising grad students have come up with a new invention-liquid metal foam.

According to Chris Veazey, who is working on his doctorate in materials science, the new stuff is a bulk metallic glass that has the stiffness of metal but the springiness of a trampoline. "You can squish it and the metal will spring back," says Veazey, who has given the stuff the tentative name "bubbloy," a combination of "bubble" and "alloy."

Greg Welsh, the co-inventor and also a doctoral student in materials science at Caltech, adds that bubbloy is made possible by a process that foams the alloy so that tiny bubbles form. Preliminary results show that if the bubbles nearly touch, the substance will be especially springy.

"We think it might be especially useful for the crumple zone of a car," says Veazey. "It should make a car safer than one where the structures in the crumple zone are made of conventional metals."

Bubbloy is made of palladium, nickel, copper, and phosphorus. This particular alloy was already known as one of the best bulk metallic glasses around, but Veazey and Welsh's contribution was figuring out how to get the stuff to foam. Other researchers have previously figured out how to foam metals like titanium and aluminum, but bubbloy will have big advantages in the strength-to-weight ratio.

How good is good? Veazey and Welsh's preliminary castings result in bubbloy that is light enough to float in water, yet quite strong and elastic.

"To make it really well is a challenge," Welsh says.

Bubbloy is one of several advances that will be showcased at a September 15 conference at Caltech. The conference, titled "Materials at the Fore," is the third annual meeting of the Center for the Science and Engineering of Materials at Caltech.

The day-long conference will begin with check-in and a continental breakfast at the Beckman Institute Courtyard on the west side of campus. Opening remarks and an overview of the conference will be presented at 8:30 a.m. by center director Julia Kornfield, a professor of chemical engineering at Caltech.

Presentations will include "Nano-scale Mechanical Properties," by Subra Suresh of MIT; "Synthesis and Assembly of Biological Macromolecules: DNA and Beyond," by Steve Quake of Caltech; "Thermoelectric Devices," by Sossina Haile of Caltech, and others.

Attendance is free but requires registration, and reporters are welcome to cover any or all of the presentations. Complete information is available at the Web site http://www.csem.caltech.edu/annrev/index.html.

Reporters who would like to attend are asked to contact Caltech Media Relations in advance.

Writer: 
Robert Tindol
Writer: 

Johnson & Johnson Awards $180,000 Grant for Antileukemic Drug Research

PASADENA, Calif. — What do leukemia, the evergreen plum-yew tree in southeast Asia, and California Institute of Technology faculty member Brian Stoltz have in common?

Stoltz, an assistant professor of chemistry, is utilizing the yew to create antileukemic drugs.

To assist him in this effort, health-care product manufacturer Johnson & Johnson has awarded Stoltz a $180,000 grant over three years as part of its Focused Giving Program.

Stoltz's research in natural product synthesis and synthetic methodology has focused on developing highly selective methods for oxidizing organic compounds using a small amount of a precious metal called palladium in conjunction with oxygen.

"This grant will enable us to further develop this chemistry and to apply this technology to the laboratory synthesis of meaningful quantities of important antileukemic agents isolated in trace quantities from the yew tree as well as completely novel synthetic agents," said Stoltz.

Focused Giving Grants are awarded to academic investigators doing basic research to advance science and technology in medical fields. This competitive program opens doors to new scientific developments, as well as promotes mutually beneficial relationships between scientists working for the Johnson & Johnson family of companies and those who carry out their work at universities or research centers.

David MacMillan, a professor of chemistry at Caltech, was a previous recipient of the grant.

Founded in 1891, Caltech is a private university with an enrollment of some 2,000 students, and a faculty of about 280 professorial members, 65 research members, and some 560 postdoctoral scholars. The Institute has more than 20,000 alumni. Caltech employs a staff of more than 2,400 on campus and 4,800 at JPL.

Over the years, 30 Nobel Prizes and four Crafoord Prizes have been awarded to faculty members and alumni. Forty-seven Caltech faculty members and alumni have received the National Medal of Science; and eight alumni (two of whom are also trustees), two additional trustees, and one faculty member have won the National Medal of Technology. Since 1958, 13 faculty members have received the annual California Scientist of the Year award. On the Caltech faculty there are 80 fellows of the American Academy of Arts and Sciences; and on the faculty and Board of Trustees, 70 members of the National Academy of Sciences and 45 members of the National Academy of Engineering.

MEDIA CONTACT: Jill Perry, Media Relations Director (626) 395-3226 jperry@caltech.edu

Visit the Caltech media relations web site: http://pr.caltech.edu/media

Writer: 
jp

Three Caltech Faculty Named to American Academy of Arts and Sciences

PASADENA, Calif. — The American Academy of Arts and Sciences has elected three California Institute of Technology faculty members as academy fellows. They are Fred C. Anson, Elizabeth Gilloon Professor of Chemistry, Emeritus; Joseph L. Kirschvink, professor of geobiology; and Colin F. Camerer, Rea A. and Lela G. Axline Professor of Business Economics.

The 2003 class of 187 fellows and 29 foreign honorary members includes four college presidents, three Nobel laureates, and four Pulitzer Prize winners.

Among this year's new fellows and foreign honorary members are Kofi Annan, Secretary-General of the United Nations; journalist Walter Cronkite; philanthropist William H. Gates, Sr., co-chair of the Bill and Melinda Gates Foundation; novelist Michael Cunningham; recording industry pioneer Ray Dolby; artist Cindy Sherman; and Nobel Prize-winning physicist Donald Glaser.

"It gives me great pleasure to welcome these outstanding and influential individuals to the nation's oldest and most illustrious learned society. Election to the American Academy is an honor that acknowledges the best of all scholarly fields and professions. Newly elected fellows are selected through a highly competitive process that recognizes those who have made preeminent contributions to their disciplines," said academy president Patricia Meyer Spacks.

Anson has carried out pioneering work on the electrochemistry of polymers, on the catalysis of electrode reactions, and on electrochemical reactions that involve ultrathin coating of molecules on electrode surfaces.

Kirschvink, who has been honored by students for his excellence in teaching, studies how biological evolution has influenced, and has been influenced by, major events on the surface of the earth. His most significant contributions include the "snowball" earth theory—the theory that the entire Earth may have actually frozen over several times in its history, possibly stimulating evolution. Another original concept concerns the Cambrian evolutionary explosion that he believes may have been precipitated in part by the earth's rotational axis having moved to the equator in a geologically short interval of time.

Camerer's research in experimental and behavioral economics, integrates psychology with economics to explore the impact on decision sciences and game theory. His research uses economics experiments and field studies to understand how people behave when making decisions. Such research is helpful in predicting economic trends and in understanding social policy. Poverty, war, cross-cultural interactions--most social issues are affected by decision psychology.

The total number of Caltech faculty named to the academy is now 82.

The academy was founded in 1780 by John Adams, James Bowdoin, John Hancock, and other scholar-patriots "to cultivate every art and science which may tend to advance the interest, honor, dignity, and happiness of a free, independent, and virtuous people." The academy has elected as fellows and foreign honorary members the finest minds and most influential leaders from each generation, including George Washington and Ben Franklin in the eighteenth century, Daniel Webster and Ralph Waldo Emerson in the nineteenth, and Albert Einstein and Winston Churchill in the twentieth. The current membership includes more than 150 Nobel laureates and 50 Pulitzer Prize winners. Drawing on the wide-ranging expertise of its membership, the academy conducts thoughtful, innovative, non-partisan studies on international security, social policy, education, and the humanities.

A full list of new members is available on the Academy website at http://www.amacad.org/news/new2003.htm.

The academy will welcome this year's new fellows and foreign honorary members at the annual induction ceremony at the academy's headquarters in Cambridge, Mass., in October.

MEDIA CONTACT: Jill Perry, Media Relations Director (626) 395-3226 jperry@caltech.edu

Visit the Caltech media relations web site: http://pr.caltech.edu/media

Writer: 
jp
Exclude from News Hub: 
Yes

Six Caltech Professors Awarded Sloan Research Fellowships

PASADENA, Calif.— Six Caltech professors recently received Alfred P. Sloan Research Fellowships for 2003.

The Caltech recipients in the field of chemistry are Paul David Asimow, assistant professor of geology and geochemistry, Linda C. Hsieh-Wilson, Jonas C. Peters, and Brian M. Stoltz, assistant professors of chemistry. In mathematics, a Sloan Fellowship was awarded to Danny Calegari, associate professor of mathematics, and in neuroscience, to Athanassios G. Siapas, assistant professor of computation and neural systems.

Each Sloan Fellow receives a grant of $40,000 for a two-year period. The grants of unrestricted funds are awarded to young researchers in the fields of physics, chemistry, computer science, mathematics, neuroscience, computational and evolutionary molecular biology, and economics. The grants are given to pursue diverse fields of inquiry and research, and to allow young scientists the freedom to establish their own independent research projects at a pivotal stage in their careers. The Sloan Fellows are selected on the basis of "their exceptional promise to contribute to the advancement of knowledge."

From over 500 nominees, a total of 117 young scientists and economists from 50 different colleges and universities in the United States and Canada, including Caltech's six, were selected to receive a Sloan Research Fellowship.

Twenty-eight former Sloan Fellows have received Nobel prizes.

"It is a terrific honor to receive this award and to be a part of such a tremendous tradition of excellence within the Sloan Foundation," said Stoltz. Asimow commented that he will use his Sloan Fellowship to "support further investigation into the presence of trace concentrations of water in the deep earth... I'm pleased because funds that are unattached to any particular grant are enormously useful for seeding new and high-risk projects that are not quite ready to turn into proposals." On his research, Peters said, "The Sloan award will provide invaluable seed money for work we've initiated in the past few months regarding nitrogen reduction using molecular iron systems."

The Alfred P. Sloan Research Fellowship program was established in 1955 by Alfred P. Sloan, Jr., who was the chief executive officer of General Motors for 23 years. Its objective is to encourage research by young scholars at a time in their careers when other support may be difficult to obtain. It is the oldest program of the Alfred P. Sloan Foundation and one of the oldest fellowship programs in the country.

Contact: Deborah Williams-Hedges (626) 395-3227 debwms@caltech.edu

Visit the Caltech Media Relations Web site at: http://pr.caltech.edu/media

###

Writer: 
DWH
Writer: 
Exclude from News Hub: 
Yes

Caltech Professor Receives National Academy of Sciences Award

PASADENA, Calif.— Harry B. Gray, Arnold O. Beckman Professor of Chemistry and founding director of the Beckman Institute at the California Institute of Technology, has been awarded the National Academy of Sciences (NAS) Award in Chemical Sciences.

This medal and prize of $20,000 are awarded annually for "innovative research in the chemical sciences that, in the broadest sense, contributes to a better understanding of the natural sciences and to the benefit of humanity," according to NAS. Gray was chosen for "his demonstration of long-range electron tunneling in proteins, his inspirational teaching and mentoring of students, and his unselfish service as a statesman for chemistry." The prize, supported by the Merck Company Foundation, has been presented since 1979.

Gray's noteworthy career has focused on interdisciplinary research that addresses many of the fundamental problems in inorganic spectroscopy and photochemistry, biological inorganic chemistry, and biophysics.

Gray, the recipient of numerous distinguished honors and awards, has been a Caltech professor since 1966. He was named the Arnold O. Beckman Professor of Chemistry in 1981, and served as chair of the Division of Chemistry and Chemical Engineering from 1978 to 1984. From 1986 to 2001 he was the head of the Beckman Institute. Gray received the National Medal of Science in 1986.

Contact: Deborah Williams-Hedges (626) 395-3227 debwms@caltech.edu

Visit the Caltech Media Relations Web site at: http://pr.caltech.edu/media

###

Writer: 
DWH
Writer: 
Exclude from News Hub: 
Yes

Two Caltech Professors Elected to American Philosophical Society

PASADENA, Calif. — The American Philosophical Society (APS) recently announced that Pamela J. Bjorkman, professor of biology at Caltech and investigator of the Howard Hughes Medical Institute (HHMI), and Peter B. Dervan, Bren Professor of Chemistry, are two of the 37 new members elected in this year.

Bjorkman is being recognized for her work with molecules needed for cell-surface recognition, and their role in the immune system. Her lab is responsible for the discovery of the three-dimensional structure of a protein implicated in cachexia, the syndrome that causes AIDS and cancer patients to lose body mass.

With a BA from the University of Oregon in 1978 and a PhD from Harvard in 1984, Bjorkman joined the Caltech staff in 1989 as an assistant professor of biology. She became a full professor in 1998, and also a full investigator for the HHMI in 2000.

In addition to the APS, Bjorkman is also a member of the National Academy of Sciences, and has been awarded the Gairdner Foundation International Award, which recognizes contributions to the medical sciences, the William B. Coley Award for Distinguished Research in Fundamental Immunology, and the Paul Ehrlich and Ludwig Darmstaedter Award.

Dervan's research is aimed at the bioorganic chemistry of nucleic acids and the recognition of DNA by small molecules. Using synthesis, biology, and physical chemistry, he and his colleagues have created synthetic molecules that are similar to natural proteins in their ability to recognize predetermined DNA sequences.

A Boston native, Dervan received his BS from Boston College in 1967 and a PhD from Yale University in 1972. He held a postdoctoral fellowship at Stanford University before joining Caltech in 1973 as an assistant professor of chemistry. He was named Bren Professor of Chemistry in 1988.

His election to the APS adds to Dervan's list of professional honors, which includes membership in the National Academy of Sciences and the Institute of Medicine, and foreign membership in the French Academy of Sciences.

The American Philosophical Society was founded over 250 years ago by Benjamin Franklin, making it the oldest learned society in the United States. The organization supports the search for functional knowledge in the fields of sciences and humanities through collaboration between members and the community as a whole.

CONTACT: Ken Watson, Media Relations (626) 395-3227

Visit the Caltech media relations web site: http://pr.caltech.edu/media

Writer: 
KW
Exclude from News Hub: 
Yes

Caltech Professor Receives Young Investigator Award for Insights into the Brain

For Immediate Release May 8, 2001

PASADENA, Ca.— How does a brief moment in time become etched forever as a memory? How does the brain manipulate the body's biomechanical ability to allow us—well, most of us—to walk and chew gum at the same time? Understanding the chemical basis of such brain processes is the goal of Linda C. Hsieh-Wilson, an assistant professor of chemistry at the California Institute of Technology. In support of her research, Hsieh-Wilson has been named a Beckman Young Investigator by the Arnold and Mabel Beckman Foundation, and will receive $240,000 in support over the next two years.

In her laboratory, Hsieh-Wilson and her graduate students apply a multidisciplinary approach to understanding the molecular mechanisms that enable nerve cells to interact and communicate with one another. "We know that complex processes, such as learning and memory, are the result of many molecules—proteins, carbohydrates, and neurotransmitters—working together in the brain to transmit, process, and store information," Hsieh-Wilson notes. "However, we do not yet know the identity of many of these molecules, or understand how their structures relate to their biological function." By combining chemistry, molecular biology, and neurobiology, Hsieh-Wilson and her students can make molecules that test their hypotheses about the molecular mechanisms that allow neuronal communication.

The group explores chemical changes at a cell's synapse, the point between two nerve cells where an electrical nerve impulse is converted to a chemical signal for transmission from one cell to the next. They are also focusing on gaining a better understanding of the chemical modifications that occur to intracellular proteins when nerve cells are stimulated. By understanding these processes, they hope to elucidate the chemical changes that are important for brain function, as well as dysfunction.

Achieving these goals would not only provide insight into how we learn and remember, but would allow researchers to develop strategies for intervention when these processes break down.

Prior to joining the chemistry faculty last summer, Hsieh-Wilson obtained her PhD in chemistry from UC Berkeley in 1996, and completed her postdoctoral studies in neurobiology at the Rockefeller University. "I sincerely appreciate the generosity and support of the Beckman Foundation—this award enables us to build an interdisciplinary research program, and to pursue new avenues of research at the interface of chemistry and neurobiology."

The Arnold and Mabel Beckman Foundation is an independent, nonprofit foundation located in Irvine, California, and originally established in September 1977. Its mission is to support research in the fields of chemistry and the life sciences, and to foster the invention of methods, instruments, and materials that will open new avenues of research and applications in these disciplines and related sciences. Through their Beckman Foundation, Dr. and Mrs. Beckman contributed more than $350 million to the advancement of scientific research and education. Mabel Beckman died in 1989; Dr. Beckman celebrated his 101st birthday in April 2001.

 

Writer: 
MW
Exclude from News Hub: 
Yes

Pages

Subscribe to RSS - CCE