Caltech Researchers Show Efficacy of Gene Therapy in Mouse Models of Huntington's Disease

Researchers at Caltech have shown that a highly specific intrabody (an antibody fragment that works against a target inside a cell) is capable of stalling the development of Huntington's disease in a variety of mouse models. "Gene therapy in these models successfully attenuated the symptoms of Huntington's disease and increased life span," notes Paul Patterson, the Anne P. and Benjamin F. Biaggini Professor of Biological Sciences. 

Cells in developing tissue consider their signaling exposure history to determine location

Researchers at the California Institute of Technology (Caltech) have proposed a novel model that differs from a widely held hypothesis about the mechanisms by which developing animals pattern their tissues and structures. 

Caltech Scientists Get Detailed Glimpse of Chemoreceptor Architecture in Bacterial Cells

Using state-of-the-art electron microscopy techniques, a team led by researchers from Caltech has for the first time visualized and described the precise arrangement of chemoreceptors—the receptors that sense and respond to chemical stimuli—in bacteria. In addition, they have found that this specific architecture is the same throughout a wide variety of bacterial species, which means that this is a stable, universal structure that has been conserved over evolutionary time.

Caltech Researchers Pinpoint Neurons that Control Obesity in Fruit Flies

A team of scientists from Caltech have pinpointed two groups of neurons in fruit fly brains that have the ability to sense and manipulate the fly's fat stores in much the same way as do neurons in the mammalian brain. The existence of this sort of control over fat deposition and metabolic rates makes the flies a potentially useful model for the study of human obesity, the researchers note.

Caltech Scientists Help Launch the First Standard Graphical Notation for Biology

Researchers at the California Institute of Technology (Caltech) and their colleagues in 30 laboratories worldwide have released a new set of standards for graphically representing biological information—the biology equivalent of the circuit diagram in electronics. This visual language should make it easier to exchange complex information, so that biological models are depicted more accurately, consistently, and in a more readily understandable way.  

Caltech-led Team Shows How Evolution Can Allow for Large Developmental Leaps

Most evolutionary changes happen in tiny increments. But when it comes to traits like the number of wings on an insect, or limbs on a primate, there is no middle ground. How are these sorts of large evolutionary leaps made? According to a team led by scientists at Caltech, such changes may at least sometimes be the result of random fluctuations, or noise (nongenetic variations), working alongside a phenomenon known as partial penetrance.

Maple Seeds and Animals Exploit the Same Trick to Fly

The twirling seeds of maple trees spin like miniature helicopters as they fall to the ground. Because the seeds descend slowly as they swirl, they're carried aloft by the wind and dispersed over great distances. Just how the seeds manage to fall so slowly, however, has mystified scientists. In research published in the June 12 Science, researchers from Wageningen University in the Netherlands and Caltech describe the aerodynamic secret of the enchanting swirling seeds.

Caltech Scientists Reveal How Neuronal Activity is Timed in Brain's Memory-Making Circuits

Theta oscillations are a type of brain rhythm that orchestrates neuronal activity in the hippocampus, a brain area critical for the formation of new memories. For several decades these oscillations were believed to be "in sync" across the hippocampus, timing the firing of neurons like a sort of central pacemaker. A new study conducted by researchers at Caltech shows that, instead, theta oscillations sweep along the length of the hippocampus as traveling waves.  

Caltech, UCSF Scientists Determine How Body Differentiates Between a Scorch and a Scratch

You can tell without looking whether you've been stuck by a pin or burnt by a match. But how? In research that overturns conventional wisdom, a team of scientists from Caltech and UCSF, have shown that this sensory discrimination begins in the skin at the very earliest stages of neuronal information processing, with different populations of sensory neurons--called nociceptors--responding to different kinds of painful stimuli. 

Caltech Scientists Show Why Anti-HIV Antibodies are Ineffective at Blocking Infection

Some 25 years after the AIDS epidemic spawned a worldwide search for an effective vaccine against the human immunodeficiency virus (HIV), progress in the field seems to have effectively become stalled. The reason? According to new findings from a team of researchers from Caltech, it's at least partly due to the fact that our body's natural HIV antibodies simply don't have a long enough reach to effectively neutralize the viruses they are meant to target.  

Pages

Subscribe to RSS - BBE