11/17/2008 08:00:00
Lori Oliwenstein
The bacterial cell wall that is the target of potent antibiotics such as penicillin is actually made up of a thin single layer of carbohydrate chains, linked together by peptides, which wrap around the bacterium like a belt around a person, according to research conducted by scientists at the California Institute of Technology (Caltech). This first-ever glimpse of the cell-wall structure in three dimensions was made possible by new high-tech microscopy techniques that enabled the scientists to visualize these biological structures at nanometer scales.
10/13/2008 07:00:00
Kathy Svitil
The transportation of antibodies from a mother to her newborn child is vital for the development of that child's nascent immune system. Those antibodies, donated by transfer across the placenta before birth or via breast milk after birth, help shape a baby's response to foreign pathogens and may influence the later occurrence of autoimmune diseases. Images from biologists at the California Institute of Technology (Caltech) have revealed for the first time the complicated process by which these antibodies are shuttled from mother's milk, through her baby's gut, and into the bloodstream, and offer new insight into the mammalian immune system.
10/08/2008 07:00:00
Lori Oliwenstein
Genetically modifying a receptor found on the neurons that produce the neurotransmitter dopamine has given California Institute of Technology (Caltech) researchers a unique glimpse into the workings of the brain's dopamine system--as well as a new target for treating diseases that result from either too much or too little of this critical neurotransmitter.
09/30/2008 07:00:00
Kathy Svitil
How a cell achieves the coordinated control of a number of genes at the same time, a process that's necessary for it to regulate its own behavior and development, has long puzzled scientists. Michael Elowitz, an assistant professor of biology and applied physics at the California Institute of Technology (Caltech), along with Long Cai, a postdoctoral research scholar at Caltech, and graduate student Chiraj Dalal, have discovered a surprising answer. Just as human engineers control devices ranging from dimmer switches to retrorockets using pulsed--or frequency modulated (FM)--signals, cells tune the expression of groups of genes using discrete bursts of activation.
09/22/2008 07:00:00
Lori Oliwenstein
Bruce A. Hay, associate professor of biology at the California Institute of Technology (Caltech), has been named a 2008 NIH Director's Pioneer Award recipient by National Institutes of Health Director Elias A. Zerhouni, MD.
09/03/2008 07:00:00
Kathy Svitil
The advantage of using two eyes to see the world around us has long been associated solely with our capacity to see in three dimensions. Now, a new study by scientists at Rensselaer Polytechnic Institute in New York and the California Institute of Technology (Caltech) has uncovered a truly eye-opening advantage to binocular vision: the ability to see through things.
08/28/2008 07:00:00
Kathy Svitil
Over the past two decades, Michael Dickinson has been interviewed by reporters hundreds of times about his research on the biomechanics of insect flight. One question from the press has always dogged him: Why are flies so hard to swat?
08/06/2008 07:00:00
Kathy Svitil
Individuals with synesthesia perceive the world in a different way from the rest of us. Because their senses are cross-activated, some synesthetes perceive numbers or letters as having colors or days of the week as possessing personalities, even as they function normally in the world. Now, researchers at the California Institute of Technology have discovered a type of synesthesia in which individuals hear sounds, such as tapping, beeping, or whirring, when they see things move or flash. Surprisingly, the scientists say, auditory synesthesia may not be unusual--and may simply represent an enhanced form of how the brain normally processes visual information.
07/30/2008 07:00:00
Kathy Svitil
Organisms ranging from humans to plants to the lowliest bacterium use molecules to communicate. Some chemicals trigger the various stages of an organism's development, and still others are used to attract members of the opposite sex. Researchers at the California Institute of Technology have now found a rare kind of signaling molecule in the nematode worm Caenorhabditis elegans that serves a dual purpose, working as both a population-control mechanism and a sexual attractant.
07/18/2008 07:00:00
elisabeth nadin
Viruses achieve their definition of success when they can thrive without killing their host. Now, biologists Pamela Bjorkman and Zhiru Yang of the California Institute of Technology have uncovered how one such virus, prevalent in humans, evolved over time to hide from the immune system.