11/21/2011 08:00:00
Katie Neith

A team of undergrads recently received accolades for their research at an international competition in Boston. Their studies, which earned them a gold award at the 2011 International Bio-Molecular Design Competition, started out as a summer undergrad research fellowship (SURF) project. The group also received a third place ranking in the "best wiki" prize category, based on a series of web pages that explained their project, "DeoxyriboNucleicAwesome."

10/05/2011 17:00:00
Kimm Fesenmaier

For the first time, researchers at Caltech, in collaboration with a team from the University of Vienna, have managed to cool a miniature mechanical object to its lowest possible energy state using laser light. The achievement paves the way for the development of exquisitely sensitive detectors as well as for quantum experiments that scientists have long dreamed of conducting.

08/12/2011 07:00:00
Kimm Fesenmaier

In the last couple of years, researchers have observed that water spontaneously flows into extremely small tubes of graphite or graphene, called carbon nanotubes. However, no one has managed to explain why. Now, using a novel method to calculate the dynamics of water molecules, Caltech researchers believe they have solved the mystery. It turns out that entropy, a measurement of disorder, has been the missing key.

08/04/2011 18:00:00
Marcus Woo

Stretching for thousands of miles beneath oceans, optical fibers now connect every continent except for Antarctica. But although optical fibers are increasingly replacing copper wires, carrying information via photons instead of electrons, today's computer technology still relies on electronic chips. Now, researchers led by engineers at the Caltech are paving the way for the next generation of computer-chip technology: photonic chips.

05/27/2011 07:00:00
Marcus Woo

At the forefront of nanotechnology, researchers design miniature machines to do big jobs, from treating diseases to harnessing sunlight for energy. But as they push the limits of this technology, devices are becoming so small and sensitive that the behavior of individual atoms starts to get in the way. Now Caltech researchers have, for the first time, measured and characterized these atomic fluctuations—which cause statistical noise—in a nanoscale device. 

05/17/2011 23:00:00
Kathy Svitil

Caltech scientists have conducted experiments confirming which of three possible mechanisms is responsible for the spontaneous formation of 3-D pillar arrays in nanofilms. These protrusions appear suddenly when the surface of a molten nanofilm is exposed to an extreme temperature gradient and self-organize into hexagonal, lamellar, square, or spiral patterns. 

03/29/2011 07:00:00

On March 29, the world's largest scientific society will bestow its highest honor on Ahmed H. Zewail, Caltech's Linus Pauling Professor of Chemistry and professor of physics.

01/13/2011 08:00:00
Marcus Woo

More than 50 years ago, at a meeting of the American Physical Society hosted by Caltech, Richard Feynman gave a talk called “There’s Plenty of Room at the Bottom.” In his visionary speech, Feynman discussed the technological promise of tiny machines as small as a few atoms. This promise has grown into a full-fledged discipline we now know as nanoscience, and it is the subject of TEDxCaltech’s last session, “Nanoscience and Future Biology.”

12/29/2010 08:00:00

Caltech scientists recently demonstrated a robot that is capable of following a trail of chemical breadcrumbs. The surprising twist: the robot consists of a single molecule. The three-legged "molecular spider" can traverse a DNA origami landscape from one end to the other (albeit rather ploddingly), turning corners as needed and stopping when it reaches its destination. Graduate student Nadine Dabby will describe the tiny traveler at January's TEDxCaltech conference, where she is a featured speaker.

09/22/2010 23:00:00
Marcus Woo

Computers, light bulbs, and even people generate heat—energy that ends up being wasted. Thermoelectric devices, which convert heat to electricity and vice versa, harness that energy. But they're not efficient enough for widespread commercial use or are made from expensive or environmentally harmful rare materials.

Now, Caltech researchers have developed a new type of material—a nanomesh, composed of a thin film with a grid-like arrangement of tiny holes—that could lead to efficient thermoelectric devices.

Subscribe to Caltech News tagged with "nanoscience"