News articles tagged with "materials_science"

08/21/2014 13:22:29
Kathy Svitil
The annual prize recognizes researchers who have made "an outstanding and innovative contribution" to the field of applied physics.
08/12/2011 07:00:00
Kimm Fesenmaier

In the last couple of years, researchers have observed that water spontaneously flows into extremely small tubes of graphite or graphene, called carbon nanotubes. However, no one has managed to explain why. Now, using a novel method to calculate the dynamics of water molecules, Caltech researchers believe they have solved the mystery. It turns out that entropy, a measurement of disorder, has been the missing key.

05/23/2011 07:00:00
Dave Zobel

Caltech scientists have concocted a recipe for a thermoelectric material—one that converts heat energy into electricity—that might be able to operate off nothing more than the heat of a car's exhaust. In a paper published in Nature this month, G. Jeffrey Snyder and his colleagues reported on a compound that shows high efficiency in a temperature range of around 260 to 1160 degrees Fahrenheit. In other words, the heat escaping out your car's tailpipe could be used to help power its electrical components.

05/17/2011 23:00:00
Kathy Svitil

Caltech scientists have conducted experiments confirming which of three possible mechanisms is responsible for the spontaneous formation of 3-D pillar arrays in nanofilms. These protrusions appear suddenly when the surface of a molten nanofilm is exposed to an extreme temperature gradient and self-organize into hexagonal, lamellar, square, or spiral patterns. 

05/12/2011 10:00:00
Marcus Woo

Stronger than steel or titanium—and just as tough—metallic glass is an ideal material for everything from cell-phone cases to aircraft parts. Now, researchers at the California Institute of Technology (Caltech) have developed a new technique that allows them to make metallic-glass parts utilizing the same inexpensive processes used to produce plastic parts. With this new method, they can heat a piece of metallic glass at a rate of a million degrees per second and then mold it into any shape in just a few milliseconds.

01/20/2011 08:00:00
Lori Oliwenstein

A new class of artificial materials called metamaterials may one day be used to create ultrapowerful microscopes, advanced sensors, improved solar cells, computers that use light instead of electronic signals to process information, and even an invisibility cloak. In a Perspectives piece in this week's issue of the journal Science, Caltech's Harry Atwater and Purdue University colleague Alexandra Boltasseva describe advances in a particular subtype of these materials—plasmonic metamaterials. 

01/19/2011 00:00:00
Kathy Svitil

Using a common metal most famously found in self-cleaning ovens, Sossina Haile hopes to change our energy future. The metal is cerium oxide—or ceria—and it is the centerpiece of a promising new technology developed by Haile and her colleagues that concentrates solar energy and uses it to efficiently convert carbon dioxide and water into fuels.

01/12/2011 00:00:00
Lori Oliwenstein

A Caltech-led team has created a palladium-based metallic glass that has a combination of strength and toughness at a level not previously been seen in any other material. The study demonstrates for the first time that the metallic glasses have the capacity to become the toughest and strongest materials ever known, the researchers say. 

10/11/2010 07:00:00
Michael Rogers

An encounter with summer smog in Yosemite National Park led Caltech graduate student and accomplished nature photographer William Chueh to take action through science. His resulting research could help reduce the planet's dependence on fossil fuels, not to mention clean the air over Yosemite.

09/22/2010 23:00:00
Marcus Woo

Computers, light bulbs, and even people generate heat—energy that ends up being wasted. Thermoelectric devices, which convert heat to electricity and vice versa, harness that energy. But they're not efficient enough for widespread commercial use or are made from expensive or environmentally harmful rare materials.

Now, Caltech researchers have developed a new type of material—a nanomesh, composed of a thin film with a grid-like arrangement of tiny holes—that could lead to efficient thermoelectric devices.

07/21/2010 23:00:00
Jon Weiner

As part of a broad effort to achieve breakthrough innovations in energy production, U.S. Deputy Secretary of Energy Daniel Poneman announced an award of up to $122 million over five years to a multidisciplinary team of top scientists, led by Caltech, to establish an Energy Innovation Hub aimed at developing revolutionary methods to generate fuels directly from sunlight.  

Subscribe to Caltech News tagged with "materials_science"