01/13/2011 08:00:00
Marcus Woo

More than 50 years ago, at a meeting of the American Physical Society hosted by Caltech, Richard Feynman gave a talk called “There’s Plenty of Room at the Bottom.” In his visionary speech, Feynman discussed the technological promise of tiny machines as small as a few atoms. This promise has grown into a full-fledged discipline we now know as nanoscience, and it is the subject of TEDxCaltech’s last session, “Nanoscience and Future Biology.”

08/04/2010 17:00:00
Kathy Svitil

One key to fighting diseases such as leukemia and anemia is gaining an understanding of the genes and molecules that control the function of hematopoietic—or blood—stem cells, which provide the body with a constant supply of red and white blood cells and platelets. Biologists at Caltech have taken a large step toward that end, with the discovery of a novel group of molecules that are found in high concentrations within hematopoietic stem cells and appear to regulate their production.

07/02/2010 02:00:00
Kathy Svitil

When does a cell decide its particular identity? According to Caltech biologists, in the case of T cells—immune system cells that help destroy invading pathogens—the answer is when the cells begin expressing a particular gene called Bcl11b.

05/12/2010 17:00:00
Kathy Svitil

A team of scientists from Columbia University, Arizona State University, the University of Michigan, and Caltech have programmed an autonomous molecular "robot" made out of DNA to start, move, turn, and stop while following a DNA track.

The development could ultimately lead to molecular systems that might one day be used for medical therapeutic devices and molecular-scale reconfigurable robots—robots made of many simple units that can reposition or even rebuild themselves to accomplish different tasks.

04/23/2010 07:00:00
Kathy Svitil

We are not alone—even in our own bodies. The human gut is home to 100 trillion bacteria, which have co-evolved along with our digestive and immune systems. Most people view bacteria as harmful pathogens causing infections and disease. But some microbes, taking a different evolutionary path, have established beneficial relationships with their hosts. Still others may be perched somewhere in between, according to research by Caltech biologists that offers new insight into the causes of inflammatory bowel disease and colon cancer.

04/21/2010 07:00:00
Kathy Svitil

Taking inspiration from a popular executive toy ("Newton's cradle"), researchers at Caltech have built a device—called a nonlinear acoustic lens—that produces highly focused, high-amplitude acoustic signals dubbed "sound bullets." The acoustic lens and its sound bullets (which can exist in fluids—like air and water—as well as in solids) have the potential to revolutionize applications from medical imaging and therapy to the nondestructive evaluation of materials and engineering systems.

03/21/2010 18:00:00
Jon Weiner

A Caltech-led team of researchers and clinicians has published the first proof that a targeted nanoparticle—used as an experimental therapeutic and injected directly into a patient's bloodstream—can traffic into tumors, deliver double-stranded small interfering RNAs, and turn off an important cancer gene using a mechanism known as RNA interference. Moreover, the team demonstrated that this new type of therapy can make its way to human tumors in a dose-dependent fashion.

03/03/2010 08:00:00
Deborah Williams-Hedges

Caltech graduate student Heather D. Agnew is the recipient of the 2010 $30,000 Lemelson-MIT Caltech Student Prize. Agnew is among the four $30,000 Lemelson-MIT Collegiate Student Prize winners. She was recognized for her integral contributions to the development of innovative biochemical protocols that can be utilized for more stable, robust—and inexpensive—detection of diseases like cancer, HIV, or malaria.

12/16/2009 08:00:00
Jon Weiner

Caltech and UCLA have announced the establishment of the Joint Center for Translational Medicine (JCTM), which will advance experimental research into clinical applications, including the diagnosis and therapy of diseases such as cancer.

06/18/2009 07:00:00
Lori Oliwenstein

The cells in our body are constantly receiving mixed messages. An epithelial cell might be exposed to one signal telling it to divide and, simultaneously, another telling it to stop dividing. The tug-of-war between these two sets of influences, and the effects they have on tissue growth, are explained and explored in a paper authored by scientists from Caltech and published online in the Proceedings of the National Academy of Sciences.

Subscribe to Caltech News tagged with "cancer"