Friday, January 26, 2018
12:00 pm

IQIM Postdoctoral and Graduate Student Seminar

Bulk Entanglement Gravity
Sean Carroll, Research Professor of Physics, Caltech

Abstract: Nature is quantum, but we human beings tend to think in terms of classical variables. I consider the emergence of spacetime and gravitation from a truly quantum-first perspective, in which our best description of the world is as a state vector evolving in Hilbert space. Everything else, including space, fields, and particles, is emergent from the state vector. Imagining that Hilbert space can be written as a tensor product of many factors, we can define emergent distances and areas from the entanglement between those factors. I will outline a set of conditions necessary for this entanglement data to describe an emergent geometry, and a further set of conditions under which quantum dynamics naturally leads to Einstein's equation for gravity, at least in the weak-field limit. This approach suggests that we should not think about quantizing gravity, but rather about finding gravity within quantum mechanics.


 

 

Contact Marcia Brown marciab@caltech.edu at 626-395-4013
Add this event to my calendar